Deep learning massively accelerates super-resolution localization microscopy

被引:446
作者
Ouyang, Wei [1 ,2 ,3 ]
Aristov, Andrey [1 ,2 ,3 ]
Lelek, Mickael [1 ,2 ,3 ]
Hao, Xian [1 ,2 ,3 ]
Zimmer, Christophe [1 ,2 ,3 ]
机构
[1] Inst Pasteur, Unite Imagerie & Modelisat, Paris, France
[2] CNRS, UMR 3691, Paris, France
[3] CNRS, USR 3756, IP, C3BI, Paris, France
关键词
OPTICAL RECONSTRUCTION MICROSCOPY; NEURAL-NETWORKS; PORE; CHROMATIN; CELLS; LIGHT;
D O I
10.1038/nbt.4106
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with a small number of observed molecules in each. Here, we present ANNA-PALM, a computational strategy that uses artificial neural networks to reconstruct super-resolution views from sparse, rapidly acquired localization images and/or widefield images. Simulations and experimental imaging of microtubules, nuclear pores, and mitochondria show that high-quality, super-resolution images can be reconstructed from up to two orders of magnitude fewer frames than usually needed, without compromising spatial resolution. Super-resolution reconstructions are even possible from widefield images alone, though adding localization data improves image quality. We demonstrate super-resolution imaging of >1,000 fields of view containing >1,000 cells in similar to 3 h, yielding an image spanning spatial scales from similar to 20 nm to similar to 2 mm. The drastic reduction in acquisition time and sample irradiation afforded by ANNA-PALM enables faster and gentler high-throughput and live-cell super-resolution imaging.
引用
收藏
页码:460 / +
页数:13
相关论文
共 64 条
[51]   Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes [J].
Serge, Arnauld ;
Bertaux, Nicolas ;
Rigneault, Herve ;
Marguet, Didier .
NATURE METHODS, 2008, 5 (08) :687-694
[52]   Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics [J].
Shroff, Hari ;
Galbraith, Catherine G. ;
Galbraith, James A. ;
Betzig, Eric .
NATURE METHODS, 2008, 5 (05) :417-423
[53]  
Simard PY, 2003, PROC INT CONF DOC, P958
[54]   Single-Molecule-Based Super-Resolution Images in the Presence of Multiple Fluorophores [J].
Simonson, Paul D. ;
Rothenberg, Eli ;
Selvin, Paul R. .
NANO LETTERS, 2011, 11 (11) :5090-5096
[55]  
Srivastava N, 2014, J MACH LEARN RES, V15, P1929
[56]   Light-sheet fluorescence microscopy for quantitative biology [J].
Stelzer, Ernst H. K. .
NATURE METHODS, 2015, 12 (01) :23-26
[57]   Nuclear Pore Scaffold Structure Analyzed by Super-Resolution Microscopy and Particle Averaging [J].
Szymborska, Anna ;
de Marco, Alex ;
Daigle, Nathalie ;
Cordes, Volker C. ;
Briggs, John A. G. ;
Ellenberg, Jan .
SCIENCE, 2013, 341 (6146) :655-658
[58]   Direct stochastic optical reconstruction microscopy with standard fluorescent probes [J].
van de Linde, Sebastian ;
Loeschberger, Anna ;
Klein, Teresa ;
Heidbreder, Meike ;
Wolter, Steve ;
Heilemann, Mike ;
Sauer, Markus .
NATURE PROTOCOLS, 2011, 6 (07) :991-1009
[59]   Mean Squared Error: Love It or Leave It? A new look at signal fidelity measures [J].
Wang, Zhou ;
Bovik, Alan C. .
IEEE SIGNAL PROCESSING MAGAZINE, 2009, 26 (01) :98-117
[60]  
Wei Ouyang, 2017, Current Opinion in Systems Biology, V4, P105, DOI 10.1016/j.coisb.2017.07.011