A remark on regularity criterion for the 3D Hall-MHD equations based on the vorticity

被引:14
作者
Ye, Zhuan [1 ]
Zhang, Zujin [2 ]
机构
[1] Jiangsu Normal Univ, Dept Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Incompressible Hall-MHD equations; Regularity criterion; Vorticity; NAVIER-STOKES EQUATIONS; DATA GLOBAL EXISTENCE; BLOW-UP CRITERION; WELL-POSEDNESS; WEAK SOLUTIONS; WAVES; DECAY;
D O I
10.1016/j.amc.2016.12.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the regularity criterion for the local-in-time classical solution to the three-dimensional (3D) incompressible Hall-magnetohydrodynamic equations (Hall-MHD). It is proved that the control of the vorticity alone can ensure the smoothness of the solution. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:70 / 77
页数:8
相关论文
共 31 条
[1]   KINETIC FOR MULATION AND GLOBAL EXISTENCE FOR THE HALL-MAGNETO-HYDRODYNAMICS SYSTEM [J].
Acheritogaray, Marion ;
Degond, Pierre ;
Frouvelle, Amic ;
Liu, Jian-Guo .
KINETIC AND RELATED MODELS, 2011, 4 (04) :901-918
[2]   Linear analysis of the Hall effect in protostellar disks [J].
Balbus, SA ;
Terquem, C .
ASTROPHYSICAL JOURNAL, 2001, 552 (01) :235-247
[3]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[4]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[5]   On hydromagnetic waves in atmospheres with application to the Sun [J].
Campos, LMBC .
THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 1998, 10 (1-4) :37-70
[6]   Global Regularity Criterion for the 3D Navier-Stokes Equations Involving One Entry of the Velocity Gradient Tensor [J].
Cao, Chongsheng ;
Titi, Edriss S. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (03) :919-932
[7]   Two regularity criteria for the 3D MHD equations [J].
Cao, Chongsheng ;
Wu, Jiahong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (09) :2263-2274
[8]   Regularity Criteria for the Three-dimensional Navier-Stokes Equations [J].
Cao, Chongsheng ;
Titi, Edriss S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) :2643-2661
[9]   ON PARTIAL REGULARITY FOR THE 3D NONSTATIONARY HALL MAGNETOHYDRODYNAMICS EQUATIONS ON THE PLANE [J].
Chae, Dongho ;
Wolf, Joerg .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (01) :443-469
[10]   Local Well-Posedness for the Hall-MHD Equations with Fractional Magnetic Diffusion [J].
Chae, Dongho ;
Wan, Renhui ;
Wu, Jiahong .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2015, 17 (04) :627-638