pth Moment exponential stability of impulsive stochastic functional differential equations with Markovian switching

被引:181
作者
Zhu, Quanxin [1 ,2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Inst Finance & Stat, Nanjing 210023, Jiangsu, Peoples R China
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2014年 / 351卷 / 07期
基金
中国国家自然科学基金;
关键词
RAZUMIKHIN-TYPE THEOREMS; SYSTEMS; CRITERIA; STABILIZATION;
D O I
10.1016/j.jfranklin.2014.04.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the pth moment exponential stability for a class of impulsive stochastic functional differential equations with Markovian switching is investigated. Based on the Lyapunov function, Dynkin formula and Razumikhin technique with stochastic version as well as stochastic analysis theory, many new sufficient conditions are derived to ensure the pth moment exponential stability of the trivial solution. The obtained results show that stochastic functional differential equations with/without Markovian switching may be pth moment exponentially stabilized by impulses. Moreover, our results generalize and improve some results obtained in the literature. Finally, a numerical example and its simulations are given to illustrate the theoretical results. (C) 2014 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3965 / 3986
页数:22
相关论文
共 28 条
[1]   Stability of functional differential equations with variable impulsive perturbations via generalized ordinary differential equations [J].
Afonso, S. M. ;
Bonotto, E. M. ;
Federson, M. ;
Gimenes, L. P. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (02) :189-214
[2]  
Bainov D.D., 1989, Systems with Impulse Effect
[3]   ON RAZUMIKHIN-TYPE STABILITY CONDITIONS FOR STOCHASTIC FUNCTIONAL-DIFFERENTIAL EQUATIONS [J].
CHANG, MH .
MATHEMATICAL MODELLING, 1984, 5 (05) :299-307
[4]  
Cheng P., 2010, IEEE INT C CONTR AUT
[5]  
Hale J.K., 1977, THEORY FUNCTIONAL DI
[6]   Stability analysis of numerical methods for systems of functional-differential and functional equations [J].
Huang, CM ;
Chang, QS .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (5-6) :717-729
[7]   Razumikhin-type theorems on stability of neutral stochastic functional differential equations [J].
Huang, Lirong ;
Deng, Feiqi .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (07) :1718-1723
[8]   Razumikhin-type exponential stability criteria of neutral stochastic functional differential equations [J].
Jankovic, Svetlana ;
Randjelovic, Jelena ;
Jovanovic, Miljana .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (02) :811-820
[9]  
Jiang M., 2005, COMMUN NONLINEAR SCI, V10, P705, DOI DOI 10.1016/j.cnsns.2004.05.002
[10]  
Lakshmikantham V., 1989, World scientific, V6