Nanophotonic integrated circuits from nanoresonators grown on silicon

被引:57
作者
Chen, Roger [1 ]
Ng, Kar Wei [1 ]
Ko, Wai Son [1 ]
Parekh, Devang [1 ]
Lu, Fanglu [1 ]
Tran, Thai-Truong D. [1 ]
Li, Kun [1 ]
Chang-Hasnain, Connie [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
NANOWIRE SOLAR-CELLS; OPTICAL INTERCONNECTS; AVALANCHE PHOTODIODES; LASERS; EFFICIENCY; ARRAY; GAAS; NANOLASERS; PHOTONICS; LIMIT;
D O I
10.1038/ncomms5325
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Harnessing light with photonic circuits promises to catalyse powerful new technologies much like electronic circuits have in the past. Analogous to Moore's law, complexity and functionality of photonic integrated circuits depend on device size and performance scale. Semiconductor nanostructures offer an attractive approach to miniaturize photonics. However, shrinking photonics has come at great cost to performance, and assembling such devices into functional photonic circuits has remained an unfulfilled feat. Here we demonstrate an on-chip optical link constructed from InGaAs nanoresonators grown directly on a silicon substrate. Using nanoresonators, we show a complete toolkit of circuit elements including light emitters, photodetectors and a photovoltaic power supply. Devices operate with gigahertz bandwidths while consuming subpicojoule energy per bit, vastly eclipsing performance of prior nanostructure-based optoelectronics. Additionally, electrically driven stimulated emission from an as-grown nanostructure is presented for the first time. These results reveal a roadmap towards future ultradense nanophotonic integrated circuits.
引用
收藏
页数:10
相关论文
共 48 条
[1]   Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects [J].
Assefa, Solomon ;
Xia, Fengnian ;
Vlasov, Yurii A. .
NATURE, 2010, 464 (7285) :80-U91
[2]  
BALIGA BJ, 1976, SOLID STATE ELECTRON, V19, P739, DOI 10.1016/0038-1101(76)90152-0
[3]  
Cao LY, 2009, NAT MATER, V8, P643, DOI [10.1038/nmat2477, 10.1038/NMAT2477]
[4]  
Chen R, 2011, NAT PHOTONICS, V5, P170, DOI [10.1038/nphoton.2010.315, 10.1038/NPHOTON.2010.315]
[5]   Critical diameter for III-V nanowires grown on lattice-mismatched substrates [J].
Chuang, Linus C. ;
Moewe, Michael ;
Chase, Chris ;
Kobayashi, Nobuhiko P. ;
Chang-Hasnain, Connie ;
Crankshaw, Shanna .
APPLIED PHYSICS LETTERS, 2007, 90 (04)
[6]   GaAs nanoneedles grown on sapphire [J].
Chuang, Linus C. ;
Moewe, Michael ;
Kar Wei Ng ;
Thai-Truong D. Tran ;
Crankshaw, Shanna ;
Chen, Roger ;
Ko, Wai Son ;
Chang-Hasnain, Connie .
APPLIED PHYSICS LETTERS, 2011, 98 (12)
[7]   GaAs-Based Nanoneedle Light Emitting Diode and Avalanche Photodiode Monolithically Integrated on a Silicon Substrate [J].
Chuang, Linus C. ;
Sedgwick, Forrest G. ;
Chen, Roger ;
Ko, Wai Son ;
Moewe, Michael ;
Ng, Kar Wei ;
Tran, Thai-Truong D. ;
Chang-Hasnain, Connie .
NANO LETTERS, 2011, 11 (02) :385-390
[8]  
Chuang S. L., 2009, Physics of Photonic Devices
[9]  
Coldren L. A., 1995, DIODE LASERS PHOTONI
[10]   Gallium arsenide p-i-n radial structures for photovoltaic applications [J].
Colombo, C. ;
Heiss, M. ;
Graetzel, M. ;
Fontcuberta i Morral, A. .
APPLIED PHYSICS LETTERS, 2009, 94 (17)