Disulfide-Linked Allosteric Modulators for Multi-cycle Kinetic Control of DNA-Based Nanodevices

被引:25
作者
Del Grosso, Erica [1 ]
Ponzo, Irene [1 ]
Ragazzon, Giulio [2 ]
Prins, Leonard J. [3 ]
Ricci, Francesco [1 ]
机构
[1] Univ Roma Tor Vergata, Dept Chem, Via Ric Sci 1, I-00133 Rome, Italy
[2] Univ Trieste, Dept Chem & Pharmaceut Sci, Via L Giorgieri 1, I-34127 Trieste, Italy
[3] Univ Padua, Dept Chem Sci, Via Marzolo 1, I-35131 Padua, Italy
基金
欧洲研究理事会;
关键词
DNA devices; DNA nanotechnology; redox cycles; supramolecular chemistry; temporal control; REDOX REGULATION; TEMPORAL CONTROL; DRIVEN; DESIGN;
D O I
10.1002/anie.202008007
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nature employs sulfur switches, that is, redox-active disulfides, to kinetically control biological pathways in a highly efficient and reversible way. Inspired by this mechanism, we describe herein a DNA-based synthetic nanodevice that acts as a sulfur switch and can be temporally controlled though redox regulation. To do this, we rationally designed disulfide DNA strands (modulators) that hybridize to a ligand-binding DNA nanodevice and act as redox-active allosteric regulators inducing the nanodevice to release or load its ligand. Upon reduction, the allosteric modulator spontaneously de-hybridizes from the nanodevice and, as a result, its effect is transient. The system is reversible and has an unprecedented high tolerance to waste products and displays transient behavior for over 40 cycles without significant loss of efficiency. Kinetic control of DNA-based ligand-binding nanodevices through purely chemical reactions paves the way for temporal regulation of more complex chemical pathways.
引用
收藏
页码:21058 / 21063
页数:6
相关论文
共 49 条
[1]   REDOX REGULATION OF FOS AND JUN DNA-BINDING ACTIVITY INVITRO [J].
ABATE, C ;
PATEL, L ;
RAUSCHER, FJ ;
CURRAN, T .
SCIENCE, 1990, 249 (4973) :1157-1161
[2]   Enzyme-Driven Assembly and Disassembly of Hybrid DNA-RNA Nanotubes [J].
Agarwal, Siddharth ;
Franco, Elisa .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (19) :7831-7841
[3]  
[Anonymous], 2008, ANGEW CHEM
[4]  
[Anonymous], 2020, ANGEW CHEM, DOI [10.1002/ange.202002180, DOI 10.1002/ANGE.202002180]
[5]  
Boekhoven J., 2010, Angew. Chemie, V122, P4935, DOI [10.1002/anie.201001511, DOI 10.1002/ANIE.201001511]
[6]   Transient assembly of active materials fueled by a chemical reaction [J].
Boekhoven, Job ;
Hendriksen, Wouter E. ;
Koper, Ger J. M. ;
Eelkema, Rienk ;
van Esch, Jan H. .
SCIENCE, 2015, 349 (6252) :1075-1079
[7]   Dissipative Self-Assembly of a Molecular Gelator by Using a Chemical Fuel [J].
Boekhoven, Job ;
Brizard, Aurelie M. ;
Kowlgi, Krishna N. K. ;
Koper, Ger J. M. ;
Eelkema, Rienk ;
van Esch, Jan H. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (28) :4825-4828
[8]   Design and Synthesis of Nonequilibrium Systems [J].
Cheng, Chuyang ;
McGonigal, Paul R. ;
Stoddart, J. Fraser ;
Astumian, R. Dean .
ACS NANO, 2015, 9 (09) :8672-8688
[9]   Dynamic combinatorial chemistry [J].
Corbett, Peter T. ;
Leclaire, Julien ;
Vial, Laurent ;
West, Kevin R. ;
Wietor, Jean-Luc ;
Sanders, Jeremy K. M. ;
Otto, Sijbren .
CHEMICAL REVIEWS, 2006, 106 (09) :3652-3711
[10]   Dissipative assembly of a membrane transport system [J].
Dambenieks, A. K. ;
Vu, P. H. Q. ;
Fyles, T. M. .
CHEMICAL SCIENCE, 2014, 5 (09) :3396-3403