Numerical solution of fractional telegraph equation by using radial basis functions

被引:136
作者
Hosseini, Vahid Reza [1 ]
Chen, Wen [1 ]
Avazzadeh, Zakieh [1 ]
机构
[1] Hohai Univ, Coll Mech & Mat, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China
关键词
Fractional telegraph equation; Fractional derivative; Radial basis functions; INTERPOLATION; APPROXIMATIONS; SUBDIFFUSION;
D O I
10.1016/j.enganabound.2013.10.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we implement the radial basis functions for solving a classical type of time-fractional telegraph equation defined by Caputo sense for (1 < alpha <= 2). The presented method which is coupled of the radial basis functions and finite difference scheme achieves the semi-discrete solution. We investigate the stability, convergence and theoretical analysis of the scheme which verify the validity of the proposed method. Numerical results show the simplicity and accuracy of the presented method. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:31 / 39
页数:9
相关论文
共 36 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], 1974, INTRO FRACTIONAL CAL
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]  
[Anonymous], 1988, Approx. Theory Appl
[5]   A numerical solution of nonlinear parabolic-type Volterra partial integro-differential equations using radial basis functions [J].
Avazzadeh, Z. ;
Rizi, Z. Beygi ;
Ghaini, F. M. Maalek ;
Loghmani, G. B. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (05) :881-893
[6]   A semi-discrete scheme for solving nonlinear hyperbolic-type partial integro-differential equations using radial basis functions [J].
Avazzadeh, Z. ;
Rizi, Z. Beygi ;
Ghaini, F. M. Maalek ;
Loghmani, G. B. .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (06)
[7]  
Buhmann M.D., 2003, C MO AP C M, V12, P259, DOI 10.1017/CBO9780511543241
[8]   Fractional diffusion equations by the Kansa method [J].
Chen, Wen ;
Ye, Linjuan ;
Sun, Hongguang .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1614-1620
[9]   Anomalous diffusion modeling by fractal and fractional derivatives [J].
Chen, Wen ;
Sun, Hongguang ;
Zhang, Xiaodi ;
Korosak, Dean .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1754-1758
[10]  
Cheney W, 1999, COURSE APPROXIMATION