Sparse Hyperspectral Unmixing via Heuristic lp-Norm Approach

被引:15
作者
Salehani, Yaser Esmaeili [1 ,2 ]
Gazor, Saeed [1 ]
Cheriet, Mohamed [2 ]
机构
[1] Queens Univ, Dept Elect & Comp Engn, Kingston, ON K7L 3N6, Canada
[2] Ecole Technol Super, Synchromedia Lab, Montreal, PQ H3C 1K3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Hyperspectral imaging; linear mixing model (LMM); l(0)-norm approximation; sparse spectral unmixing (SU); ENDMEMBER EXTRACTION; ALGORITHMS; MINIMIZATION; REGRESSION; DECOMPOSITION; SYSTEMS; L(P);
D O I
10.1109/JSTARS.2017.2775567
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a new approach to approximate the l(0) -norm for linear sparse hyperspectral unmixing of images. We approximate the l(0) -norm with the l(p)-norm and iteratively reduce p to enhance the results. The p-changing heuristic scheme that reduces the value of p smoothly and iteratively, results in an enhanced sparse solution. We introduce an iteratively reweighted l(2) -norm to approximate the l(p) -norm. In this approach, a parameter epsilon is involved to deal with the fact that l(p) -norm problem is not Lipschitz continuous for the region of p < 1. We propose two different methods to update the pair (p, epsilon). Finally, we evaluate our proposed heuristic l(p) -norm method over the synthetic data as well as real hyperspectral dataset. Experimental results show that our algorithm outperforms several state-of-the-art algorithms in terms of the reconstruction errors and their probability of success.
引用
收藏
页码:1191 / 1202
页数:12
相关论文
共 63 条
  • [1] Unsupervised Post-Nonlinear Unmixing of Hyperspectral Images Using a Hamiltonian Monte Carlo Algorithm
    Altmann, Yoann
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (06) : 2663 - 2675
  • [2] Nonlinear Spectral Unmixing of Hyperspectral Images Using Gaussian Processes
    Altmann, Yoann
    Dobigeon, Nicolas
    McLaughlin, Steve
    Tourneret, Jean-Yves
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (10) : 2442 - 2453
  • [3] [Anonymous], 1993, SIGN SYST COMP 1993
  • [4] [Anonymous], 2014, IEEE INT GEOSC REM S
  • [5] [Anonymous], 1995, 5 ANN JPL AIRB EARTH
  • [6] Antoniou A., 2007, PRACTICAL OPTIMIZATI
  • [7] Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Dobigeon, Nicolas
    Parente, Mario
    Du, Qian
    Gader, Paul
    Chanussot, Jocelyn
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) : 354 - 379
  • [8] On the Uniqueness of Nonnegative Sparse Solutions to Underdetermined Systems of Equations
    Bruckstein, Alfred M.
    Elad, Michael
    Zibulevsky, Michael
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (11) : 4813 - 4820
  • [9] From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
    Bruckstein, Alfred M.
    Donoho, David L.
    Elad, Michael
    [J]. SIAM REVIEW, 2009, 51 (01) : 34 - 81
  • [10] Enhancing Sparsity by Reweighted l1 Minimization
    Candes, Emmanuel J.
    Wakin, Michael B.
    Boyd, Stephen P.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) : 877 - 905