Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes

被引:123
作者
Hylton, N. P. [1 ]
Li, X. F. [2 ]
Giannini, V. [1 ]
Lee, K. -H. [1 ]
Ekins-Daukes, N. J. [1 ]
Loo, J. [3 ]
Vercruysse, D. [3 ]
Van Dorpe, P. [3 ,4 ]
Sodabanlu, H. [5 ]
Sugiyama, M. [5 ]
Maier, S. A. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England
[2] Soochow Univ, Inst Modern Opt Technol, Suzhou 215006, Jiangsu, Peoples R China
[3] IMEC, B-3001 Louvain, Belgium
[4] Katholieke Univ Leuven, Dept Phys & Astron, B-3000 Louvain, Belgium
[5] Univ Tokyo, Inst Engn Innovat, Sch Engn, Tokyo 1138656, Japan
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1038/srep02874
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We illustrate the important trade-off between far-field scattering effects, which have the potential to provide increased optical path length over broad bands, and parasitic absorption due to the excitation of localized surface plasmon resonances in metal nanoparticle arrays. Via detailed comparison of photocurrent enhancements given by Au, Ag and Al nanostructures on thin-film GaAs devices we reveal that parasitic losses can be mitigated through a careful choice of scattering medium. Absorption at the plasmon resonance in Au and Ag structures occurs in the visible spectrum, impairing device performance. In contrast, exploiting Al nanoparticle arrays results in a blue shift of the resonance, enabling the first demonstration of truly broadband plasmon enhanced photocurrent and a 22% integrated efficiency enhancement.
引用
收藏
页数:6
相关论文
共 32 条
[1]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[2]   Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates [J].
Beck, F. J. ;
Verhagen, E. ;
Mokkapati, S. ;
Polman, A. ;
Catchpole, K. R. .
OPTICS EXPRESS, 2011, 19 (06) :A146-A156
[3]   Tunable light trapping for solar cells using localized surface plasmons [J].
Beck, F. J. ;
Polman, A. ;
Catchpole, K. R. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)
[4]   A photonic-plasmonic structure for enhancing light absorption in thin film solar cells [J].
Bhattacharya, Joydeep ;
Chakravarty, Nayan ;
Pattnaik, Sambit ;
Slafer, W. Dennis ;
Biswas, Rana ;
Dalal, Vikram L. .
APPLIED PHYSICS LETTERS, 2011, 99 (13)
[5]  
Bohren C.F, 2008, Absorption and Scattering of Light by Small Particles
[6]   Design principles for particle plasmon enhanced solar cells [J].
Catchpole, K. R. ;
Polman, A. .
APPLIED PHYSICS LETTERS, 2008, 93 (19)
[7]  
Catchpole KR, 2008, OPT EXPRESS, V16, P21793, DOI 10.1364/OE.16.021793
[8]   Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells [J].
Ferry, Vivian E. ;
Verschuuren, Marc A. ;
van Lare, M. Claire ;
Schropp, Ruud E. I. ;
Atwater, Harry A. ;
Polman, Albert .
NANO LETTERS, 2011, 11 (10) :4239-4245
[9]   Design Considerations for Plasmonic Photovoltaics [J].
Ferry, Vivian E. ;
Munday, Jeremy N. ;
Atwater, Harry A. .
ADVANCED MATERIALS, 2010, 22 (43) :4794-4808
[10]   Fano Resonances in Nanoscale Plasmonic Systems: A Parameter-Free Modeling Approach [J].
Giannini, Vincenzo ;
Francescato, Yan ;
Amrania, Hemmel ;
Phillips, Chris C. ;
Maier, Stefan A. .
NANO LETTERS, 2011, 11 (07) :2835-2840