Spectral analysis of nonlinear water waves based on the Hilbert-Huang transformation

被引:49
作者
Schlurmann, T [1 ]
机构
[1] Univ Gesamthsch Wuppertal, Civil Engn Dept, Hydraul Engn Sect, D-42285 Wuppertal, Germany
来源
JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME | 2002年 / 124卷 / 01期
关键词
D O I
10.1115/1.1423911
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The Hilbert-Huang transformation (HHT) is a new method for analyzing nonlinear and non-stationary data series. The central idea behind the HHT is the so-called empirical mode decomposition (EMD) that numerically, decomposes a time-dependent signal into its own underlying characteristic modes. Applying the Hilbert transformation (HT) to each of these disintegrated intrinsic mode function (IMF) subsequently, provides the Hilbert amplitude or energy spectrum-producing more accurate spectra and proposing in all probability, entirely new physical insights of nonlinear and nonstationary processes. The present paper describes the application of the HHT concerning the spectral frequency analysis of nonlinear transient water waves.
引用
收藏
页码:22 / 27
页数:6
相关论文
共 21 条
[1]  
Bendat JS., 2011, RANDOM DATA ANAL MEA
[2]   ESTIMATING AND INTERPRETING THE INSTANTANEOUS FREQUENCY OF A SIGNAL .1. FUNDAMENTALS [J].
BOASHASH, B .
PROCEEDINGS OF THE IEEE, 1992, 80 (04) :520-538
[3]  
CHIEN H, 1999, 2 GERMAN CHINESE J S, P469
[4]   On an ambiguity in the definition of the amplitude and phase of a signal [J].
Cohen, L ;
Loughlin, P ;
Vakman, D .
SIGNAL PROCESSING, 1999, 79 (03) :301-307
[5]  
Daubechies I., 1993, Ten Lectures of Wavelets, V28, P350
[6]  
FUNKE ER, 1980, P 17 INT C COAST ENG, P2255
[7]  
Gabor D., 1946, J I ELEC ENGRS PART, V93, P429, DOI [DOI 10.1049/JI-3-2.1946.0074, 10.1049/ji-3-2.1946.0074, 10.1049/JI-3-2.1946.0074]
[8]   A new view of nonlinear water waves: The Hilbert spectrum [J].
Huang, NE ;
Shen, Z ;
Long, SR .
ANNUAL REVIEW OF FLUID MECHANICS, 1999, 31 :417-457
[9]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995
[10]   Wave grouping characteristics in nearshore Great Lakes [J].
Liu, PC .
OCEAN ENGINEERING, 2000, 27 (11) :1221-1230