An analytical framework for consensus-based global optimization method

被引:85
作者
Carrillo, Jose A. [1 ]
Choi, Young-Pil [2 ,3 ]
Totzeck, Claudia [4 ]
Tse, Oliver [5 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
[2] Inha Univ, Dept Math, Incheon 402751, South Korea
[3] Inha Univ, Inst Appl Math, Incheon 402751, South Korea
[4] Tech Univ Kaiserslautern, Dept Math, Erwin Schrodinger Str, D-67663 Kaiserslautern, Germany
[5] Eindhoven Univ Technol, Dept Math & Comp Sci, POB 513, NL-5600 MB Eindhoven, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
Global optimization; opinion dynamics; consensus formation; agent-based models; stochastic dynamics; mean-field limit; FLOCK SOLUTIONS; PARTICLE; METAHEURISTICS; DYNAMICS; MODELS;
D O I
10.1142/S0218202518500276
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we provide an analytical framework for investigating the efficiency of a consensus-based model for tackling global optimization problems. This work justifies the optimization algorithm in the mean-field sense showing the convergence to the global minimizer for a large class of functions. Theoretical results on consensus estimates are then illustrated by numerical simulations where variants of the method including nonlinear diffusion are introduced.
引用
收藏
页码:1037 / 1066
页数:30
相关论文
共 37 条
[1]  
[Anonymous], 1988, SIMULATED ANNEALING
[2]  
[Anonymous], 1997, Handbook of evolutionary computation
[3]  
Arnold L., 1974, Stochastic Differential Equations: Theory and Applications
[4]   Large-scale global optimization through consensus of opinions over complex networks [J].
Askari-Sichani, Omid ;
Jalili, Mahdi .
COMPLEX ADAPTIVE SYSTEMS MODELING, 2013, 1
[5]   FROM THE MICROSCALE TO COLLECTIVE CROWD DYNAMICS [J].
Bellomo, Nicola ;
Bellouquid, Abdelghani ;
Knopoff, Damian .
MULTISCALE MODELING & SIMULATION, 2013, 11 (03) :943-963
[6]   Contagion Shocks in One Dimension [J].
Bertozzi, Andrea L. ;
Rosado, Jesus ;
Short, Martin B. ;
Wang, Li .
JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (03) :647-664
[7]   A survey on metaheuristics for stochastic combinatorial optimization [J].
Bianchi L. ;
Dorigo M. ;
Gambardella L.M. ;
Gutjahr W.J. .
Natural Computing, 2009, 8 (2) :239-287
[8]   Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model [J].
Blanchet, Adrien ;
Calvez, Vincent ;
Carrillo, Jose A. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) :691-721
[9]   Metaheuristics in combinatorial optimization: Overview and conceptual comparison [J].
Blum, C ;
Roli, A .
ACM COMPUTING SURVEYS, 2003, 35 (03) :268-308
[10]  
Bolley F, 2008, LECT NOTES MATH, V1934, P371