A 3D finite element ALE method using an approximate Riemann solution

被引:22
作者
Chiravalle, V. P. [1 ]
Morgan, N. R. [1 ]
机构
[1] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA
关键词
ALE; finite element method; approximate Riemann solution; LAGRANGIAN HYDRODYNAMICS SCHEME; CELL-CENTERED HYDRODYNAMICS; COMPRESSIBLE FLOW PROBLEMS; ARTIFICIAL VISCOSITY; UNSTRUCTURED MESHES; EULERIAN METHOD; SYSTEMS; CONSERVATION; DISSIPATION; ALGORITHM;
D O I
10.1002/fld.4284
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Arbitrary Lagrangian-Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian-Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problem results are presented. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:642 / 663
页数:22
相关论文
共 40 条
  • [1] An arbitrary Lagrangian-Eulerian method with adaptive mesh refinement for the solution of the Euler equations
    Anderson, RW
    Elliott, NS
    Pember, RB
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 199 (02) : 598 - 617
  • [2] [Anonymous], 1993, SIMILARITY DIMENSION, DOI DOI 10.1016/C2013-0-08173-X
  • [4] Barth TJ, 1999, LECT NOTES COMP SCI, V5, P195
  • [6] Reduction of dissipation in Lagrange cell-centered hydrodynamics (CCH) through corner gradient reconstruction (CGR)
    Burton, D. E.
    Morgan, N. R.
    Carney, T. C.
    Kenamond, M. A.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 299 : 229 - 280
  • [7] A cell-centered Lagrangian Godunov-like method for solid dynamics
    Burton, D. E.
    Carney, T. C.
    Morgan, N. R.
    Sambasivan, S. K.
    Shashkov, M. J.
    [J]. COMPUTERS & FLUIDS, 2013, 83 : 33 - 47
  • [8] The construction of compatible hydrodynamics algorithms utilizing conservation of total energy
    Caramana, EJ
    Burton, DE
    Shashkov, MJ
    Whalen, PP
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 146 (01) : 227 - 262
  • [9] Elimination of artificial grid distortion and hourglass-type motions by means of Lagrangian subzonal masses and pressures
    Caramana, EJ
    Shashkov, MJ
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 142 (02) : 521 - 561
  • [10] A compatible, energy and symmetry preserving Lagrangian hydrodynamics algorithm in three-dimensional Cartesian geometry
    Caramana, EJ
    Rousculp, CL
    Burton, DE
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 157 (01) : 89 - 119