A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning

被引:151
作者
Teule, Florence [2 ]
Cooper, Alyssa R. [2 ]
Furin, William A. [2 ]
Bittencourt, Daniela [3 ]
Rech, Elibio L. [1 ]
Brooks, Amanda [2 ]
Lewis, Randolph V. [2 ]
机构
[1] Embrapa Genet Resources & Biotechnol, Lab Gene Transfer, Biotechnol Unit, BR-70770900 Brasilia, DF, Brazil
[2] Univ Wyoming, Dept Mol Biol, Dept 3944, Laramie, WY 82071 USA
[3] Embrapa Acre, Lab Morphogenesis & Mol Biol, BR-69914220 Rio Branco, AC, Brazil
关键词
DRAGLINE SILK; MECHANICAL-PROPERTIES; PHYSICAL-PROPERTIES; NEPHILA-CLAVIPES; EXPRESSION; FIBROIN; SEQUENCE; PURIFICATION; EVOLUTION; CONTAIN;
D O I
10.1038/nprot.2008.250
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The extreme strength and elasticity of spider silks originate from the modular nature of their repetitive proteins. To exploit such materials and mimic spider silks, comprehensive strategies to produce and spin recombinant fibrous proteins are necessary. This protocol describes silk gene design and cloning, protein expression in bacteria, recombinant protein purification and fiber formation. With an improved gene construction and cloning scheme, this technique is adaptable for the production of any repetitive fibrous proteins, and ensures the exact reproduction of native repeat sequences, analogs or chimeric versions. The proteins are solubilized in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) at 25-30% (wt/vol) for extrusion into fibers. This protocol, routinely used to spin single micrometer-size fibers from several recombinant silk-like proteins from different spider species, is a powerful tool to generate protein libraries with corresponding fibers for structure-function relationship investigations in protein-based biomaterials. This protocol may be completed in 40 d.
引用
收藏
页码:341 / 355
页数:15
相关论文
共 61 条
[1]  
AKAI H, 1983, EXPERIENTIA, V39, P443, DOI 10.1007/BF01965158
[2]   Purification and characterization of recombinant spider silk expressed in Escherichia coli [J].
Arcidiacono, S ;
Mello, C ;
Kaplan, D ;
Cheley, S ;
Bayley, H .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1998, 49 (01) :31-38
[3]  
Ausubel F.M., 1998, CURRENT PROTOCOLS MO, V1-4
[4]  
BIRNBOIM HC, 1979, NUCLEIC ACIDS RES, V7, P1513
[5]   Spidroins from the Brazilian spider Nephilengys cruentata (Araneae: nephilidae) [J].
Bittencourt, D. ;
Souto, B. M. ;
Verza, N. C. ;
Vineck, F. ;
Dittmar, K. ;
Silva, P. I., Jr. ;
Andrade, A. C. ;
da Silva, F. R. ;
Lewis, R. V. ;
Rech, E. L. .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 2007, 147 (04) :597-606
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2 [J].
Brooks, Amanda E. ;
Stricker, Shane M. ;
Joshi, Sangeeta B. ;
Kamerzell, Timothy J. ;
Middaugh, C. Russell ;
Lewis, Randolph V. .
BIOMACROMOLECULES, 2008, 9 (06) :1506-1510
[8]   TRANSLATIONAL PAUSES DURING A SPIDER FIBROIN SYNTHESIS [J].
CANDELAS, G ;
CANDELAS, T ;
ORTIZ, A ;
RODRIGUEZ, O .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1983, 116 (03) :1033-1038
[9]   SPIDER SILK GLANDS CONTAIN A TISSUE-SPECIFIC ALANINE TRANSFER-RNA THAT ACCUMULATES INVITRO IN RESPONSE TO THE STIMULUS FOR SILK PROTEIN-SYNTHESIS [J].
CANDELAS, GC ;
ARROYO, G ;
CARRASCO, C ;
DOMPENCIEL, R .
DEVELOPMENTAL BIOLOGY, 1990, 140 (01) :215-220
[10]   FEATURES OF THE CELL-FREE TRANSLATION OF A SPIDER FIBROIN MESSENGER-RNA [J].
CANDELAS, GC ;
ORTIZ, A ;
ORTIZ, N .
BIOCHEMISTRY AND CELL BIOLOGY, 1989, 67 (2-3) :173-176