Hyperbolic systems with multiplicity greater than or equal to three

被引:4
作者
Kucherenko, V. V. [1 ]
Kryvko, A. [1 ]
Ramirez De Arellano, E. [2 ]
机构
[1] Inst Politecn Nacl, Mexico City, DF, Mexico
[2] CINVESTAV IPN, Mexico City, DF, Mexico
关键词
NAVIER-STOKES EQUATIONS;
D O I
10.1134/S1061920809020095
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The wave propagation for nonstrictly hyperbolic systems whose principal symbol has a Jordan block is considered.
引用
收藏
页码:265 / 276
页数:12
相关论文
共 15 条
[1]  
[Anonymous], 1972, PERTURBATION THEORY
[2]  
[Anonymous], 1962, PARTIAL DIFFERENTIAL
[3]   On a class of strongly hyperbolic systems [J].
Bernardi, E ;
Bove, A .
ARKIV FOR MATEMATIK, 2005, 43 (01) :113-131
[4]  
BOROVIKOV VA, 1994, IEE ELECTROMAGNETIC, V37
[5]   PARAMETRIX AND THE ASYMPTOTICS OF LOCALIZED SOLUTIONS OF THE NAVIER-STOKES EQUATIONS IN R3, LINEARIZED ON A SMOOTH FLOW [J].
DOBROKHOTOV, SY ;
SHAFAREVICH, AI .
MATHEMATICAL NOTES, 1992, 51 (1-2) :47-54
[6]   ASYMPTOTIC SOLUTIONS OF LINEARIZED NAVIER-STOKES EQUATIONS [J].
DOBROKHOTOV, SY ;
SHAFAREVICH, AI .
MATHEMATICAL NOTES, 1993, 53 (1-2) :19-28
[7]  
Hormander L., 1983, Grundlehren der Mathematischen Wissenschaften, V257
[8]  
Huang K, 1987, STAT MECH, V2nd
[9]  
IVRII V, 1974, USP MAT NAUK, V39, P3
[10]  
Karasev M. V., 1979, MAT ZAMETKI, V26, P885