Application of Fuzzy C-Means Algorithm in Complex Background Image Segmentation of Forensic Science

被引:1
作者
Chen, Zhuang [1 ]
Li, ChunYu [1 ]
Jiang, ZhanQing [1 ]
Zhao, Yongqiang [1 ]
机构
[1] Univ China PPSUC, Peoples Publ Secur, Forens Image Technol Direct, 1 South Muxidi Lane, Beijing Xicheng Dist, Peoples R China
来源
COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, CSPS 2018, VOL III: SYSTEMS | 2020年 / 517卷
关键词
Image segmentation; Fuzzy C-Means; Forensic science; Stamp impression; Complex background;
D O I
10.1007/978-981-13-6508-9_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the field of forensic science, image segmentation is required as a basic and significant stage in forensic image analysis. It is very important to segment the stamp impression image with a complex background precisely. This paper puts forward a feasible and efficient approach for complex background stamp impression image segmentation based on Fuzzy C-Means (FCM) algorithm. The fuzzy feature of forensic image can be handled efficiently using Fuzzy C-Means (FCM) algorithm in the forensic science field. The results of the experiments demonstrate the validity and accuracy of Fuzzy C-Means (FCM) algorithm.
引用
收藏
页码:212 / 217
页数:6
相关论文
共 8 条
  • [1] Boss R. S. C., 2012, Proceedings of the 2012 International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME), P290, DOI 10.1109/ICPRIME.2012.6208360
  • [2] Gong C.L, 2009, J BIOMED SCI ENG, V2, P656
  • [3] ON CLUSTER VALIDITY FOR THE FUZZY C-MEANS MODEL
    PAL, NR
    BEZDEK, JC
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1995, 3 (03) : 370 - 379
  • [4] A REVIEW ON IMAGE SEGMENTATION TECHNIQUES
    PAL, NR
    PAL, SK
    [J]. PATTERN RECOGNITION, 1993, 26 (09) : 1277 - 1294
  • [5] Shantaiya S, 2016, INT J COMPUTATIONAL, V6, P331
  • [6] Shi S.P, 2008, CHIN J FORENSIC SCI
  • [7] Yu J, 2003, LECT NOTES ARTIF INT, V2639, P390
  • [8] Zhen D, 1997, PATTERN RECOGNIT ART