Iterative algorithms for nonlinear operators

被引:1602
作者
Xu, HK [1 ]
机构
[1] Univ KwaZulu Natal, Dept Math, ZA-4000 Durban, South Africa
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2002年 / 66卷
基金
新加坡国家研究基金会;
关键词
D O I
10.1112/S0024610702003332
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Iterative algorithms for nonexpansive mappings and maximal monotone operators are investigated. Strong convergence theorems are proved for nonexpansive mappings, including an improvement of a result of Lions. A modification of Rockafellar's proximal point algorithm is obtained and proved to be always strongly convergent. The ideas of these algorithms are applied to solve a quadratic minimization problem.
引用
收藏
页码:240 / 256
页数:17
相关论文
共 23 条
[1]  
Alexandre P, 1998, RAIRO-MATH MODEL NUM, V32, P223
[2]  
BAILLON JB, 1976, HOUSTON J MATH, V2, P5
[3]  
BROWDER FE, 1967, ARCH RATION MECH AN, V24, P82
[5]   CONVERGENCE THEOREMS FOR SEQUENCES OF NONLINEAR OPERATORS IN BANACH SPACES [J].
BROWDER, FE .
MATHEMATISCHE ZEITSCHRIFT, 1967, 100 (03) :201-&
[7]   A variable metric proximal point algorithm for monotone operators [J].
Burke, JV ;
Qian, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (02) :353-375
[8]  
Cioranescu I., 1990, GEOMETRY BANACH SPAC
[9]  
Goebel K., 1984, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings
[10]  
GULER O, 1991, SIAM J CONTROL OPTIM, V29, P403, DOI 10.1137/0329022