On the Laplacian spectra of graphs

被引:0
作者
Zhang, XD [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200030, Peoples R China
关键词
Laplacian matrix; bipartite density; diameter; eigenvalue;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first establish the relationship between the largest eigenvalue of the Laplacian matrix of a graph and its bipartite density. Then we present lower and upper bounds for the largest Laplacian eigenvalue of a graph in terms of its largest degree and diameter.
引用
收藏
页码:191 / 198
页数:8
相关论文
共 14 条
[1]  
[Anonymous], CBMS LECT NOTES
[2]  
[Anonymous], LINEAR ALGEBRA APPL
[3]  
ARANJO O, 1998, LINEAR ALGEBRA ITS A, V283, P171
[4]   LARGEST BIPARTITE SUBGRAPHS IN TRIANGLE-FREE GRAPHS WITH MAXIMUM DEGREE 3 [J].
BONDY, JA ;
LOCKE, SC .
JOURNAL OF GRAPH THEORY, 1986, 10 (04) :477-504
[5]   Bipartite subgraphs of graphs with maximum degree three [J].
Bylka, SA ;
Idzik, A ;
Komar, J .
GRAPHS AND COMBINATORICS, 1999, 15 (02) :129-136
[6]  
Cao DS, 1998, LINEAR ALGEBRA APPL, V270, P1
[7]   Weighted graph laplacians and isoperimetric inequalities [J].
Chung, FRK ;
Oden, K .
PACIFIC JOURNAL OF MATHEMATICS, 2000, 192 (02) :257-273
[8]   ON SOME EXTREMAL PROBLEMS IN GRAPH THEORY [J].
ERDOS, P .
ISRAEL JOURNAL OF MATHEMATICS, 1965, 3 (02) :113-&
[9]   A NOTE ON BIPARTITE SUBGRAPHS OF TRIANGLE-FREE REGULAR GRAPHS [J].
LOCKE, SC .
JOURNAL OF GRAPH THEORY, 1990, 14 (02) :181-185
[10]   RAMANUJAN GRAPHS [J].
LUBOTZKY, A ;
PHILLIPS, R ;
SARNAK, P .
COMBINATORICA, 1988, 8 (03) :261-277