Synthesis of copper nanocolloids using a continuous flow based microreactor

被引:19
作者
Xu, Lei [1 ,2 ]
Peng, Jinhui [1 ]
Srinivasakannan, C. [3 ]
Chen, Guo [1 ]
Shen, Amy Q. [2 ,4 ]
机构
[1] Kunming Univ Sci & Technol, Fac Met & Energy Engn, State Key Lab Complex Nonferrous Met Resources Cl, Kunming 650093, Peoples R China
[2] Univ Washington, Mech Engn, Seattle, WA 98195 USA
[3] Petr Inst, Chem Engn Program, Abu Dhabi, U Arab Emirates
[4] Grad Univ, Okinawa Inst Technol, Micro Bio Nanofluid Unit, Okinawa, Japan
基金
中国国家自然科学基金;
关键词
Microreactor; Synthesis; Copper nanocolloids; Sodium borohydride reduction; MICROFLUIDIC SYNTHESIS; SILVER NANOPARTICLES; METAL NANOPARTICLES; FABRICATION; DESIGN; SIZE;
D O I
10.1016/j.apsusc.2015.07.070
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The copper (Cu) nanocolloids were prepared by sodium borohydride (NaBH4) reduction of metal salt solutions in a T-shaped microreactor at room temperature. The influence of NaBH4 molar concentrations on copper particle's diameter, morphology, size distribution, and elemental compositions has been investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The ultraviolet-visible spectroscopy (UV-vis) was used to verify the chemical compounds of nanocolloids and estimate the average size of copper nanocolloids. The synthesized copper nanocolloids were uniform in size and non-oxidized. A decrease in the mean diameter of copper nanocolloids was observed with increasing NaBH4 molar concentrations. The maximum mean diameter (4.25 nm) occurred at the CuSO4/NaBH4 molar concentration ratio of 1:2. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 40 条
[21]   Microfluidic Synthesis of Polymer and Inorganic Particulate Materials [J].
Park, Jai Il ;
Saffari, Amir ;
Kumar, Sandeep ;
Guenther, Axel ;
Kumacheva, Eugenia .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 40, 2010, 40 :415-443
[22]   Continuous synthesis of functional silver nanoparticles using microreactor: Effect of surfactant and process parameters [J].
Patil, G. A. ;
Bari, M. L. ;
Bhanvase, B. A. ;
Ganvir, Vivek ;
Mishra, S. ;
Sonawane, S. H. .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2012, 62 :69-77
[23]   Discharge time dependence of a solution plasma process for colloidal copper nanoparticle synthesis and particle characteristics [J].
Pootawang, Panuphong ;
Saito, Nagahiro ;
Lee, Sang Yul .
NANOTECHNOLOGY, 2013, 24 (05)
[24]   Synthesis, characterization, and tunable optical properties of hollow gold nanospheres [J].
Schwartzberg, Adam M. ;
Olson, Tammy Y. ;
Talley, Chad E. ;
Zhang, Jin Z. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (40) :19935-19944
[25]  
Song YJ, 2005, J PHYS CHEM B, V109, P9330, DOI [10.1021/jp044777g, 10.1021/JP044777G]
[26]   Microfluidic synthesis of nanomaterials [J].
Song, Yujun ;
Hormes, Josef ;
Kumar, Challa S. S. R. .
SMALL, 2008, 4 (06) :698-711
[27]   Controlled growth of Cu nanoparticles by a tubular microfluidic reactor [J].
Song, Yujun ;
Li, Runsheng ;
Sun, Qiangqiang ;
Jin, Pengyun .
CHEMICAL ENGINEERING JOURNAL, 2011, 168 (01) :477-484
[28]   Aqueous phase Ag nanoparticles with controlled shapes fabricated by a modified nanosphere lithography and their optical properties [J].
Song, Yujun ;
Elsayed-Ali, Hani E. .
APPLIED SURFACE SCIENCE, 2010, 256 (20) :5961-5967
[29]   Spatially-resolved analysis of nanoparticle nucleation and growth in a microfluidic reactor [J].
Sounart, T. L. ;
Safier, P. A. ;
Voigt, J. A. ;
Hoyt, J. ;
Tallant, D. R. ;
Matzke, C. M. ;
Michalske, T. A. .
LAB ON A CHIP, 2007, 7 (07) :908-915
[30]   Characterization of nanoparticle delivery in microcirculation using a microfluidic device [J].
Thomas, Antony ;
Tan, Jifu ;
Liu, Yaling .
MICROVASCULAR RESEARCH, 2014, 94 :17-27