ON PAIRS OF GOLDBACH-LINNIK EQUATIONS

被引:10
作者
Kong, Yafang [1 ]
Liu, Zhixin [2 ]
机构
[1] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing 400074, Peoples R China
[2] Tianjin Univ, Sch Sci, Dept Math, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Goldbach-Linnik problem; circle method; pairs of equations; CONJECTURE; POWERS;
D O I
10.1017/S000497271600071X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that every pair of large positive even integers can be represented in the form of a pair of Goldbach-Linnik equations, that is, linear equations in two primes and k powers of two. In particular, k = 34 powers of two suffice, in general, and k = 18 under the generalised Riemann hypothesis. Our result sharpens the number of powers of two in previous results, which gave k = 62, in general, and k = 31 under the generalised Riemann hypothesis.
引用
收藏
页码:199 / 208
页数:10
相关论文
共 9 条
[1]  
Heath-Brown D. R., 2002, ASIAN J MATH, V6, P535, DOI DOI 10.4310/AJM.2002.V6.N3.A7
[2]   ON PAIRS OF LINEAR EQUATIONS IN FOUR PRIME VARIABLES AND POWERS OF TWO [J].
Kong, Yafang .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 87 (01) :55-67
[3]  
Linnik Y. V., 1951, T MAT I STEKLOVA, V38, P151
[4]  
Linnik Yu.V., 1953, Mat. Sb. (N.S.), V32, P3
[5]  
Liu J., 1999, J THEOR NOMBR BORDX, V11, P133
[6]   DENSITY OF TWO SQUARES OF PRIMES AND POWERS OF 2 [J].
Liu, Zhixin ;
Lu, Guangshi .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (05) :1317-1329
[7]   Linnik's approximation to Goldbach's conjecture, and other problems [J].
Platt, D. J. ;
Trudgian, T. S. .
JOURNAL OF NUMBER THEORY, 2015, 153 :54-62
[8]  
Wrench Jr J., 1961, Math. Comput., V15, P396
[9]   Chen's double sieve, Goldbach's conjecture and the twin prime problem [J].
Wu, J .
ACTA ARITHMETICA, 2004, 114 (03) :215-273