Development of a robust RNA-based classifier to accurately determine ER, PR, and HER2 status in breast cancer clinical samples

被引:24
作者
Wilson, Timothy R. [1 ]
Xiao, Yuanyuan [2 ]
Spoerke, Jill M. [1 ]
Fridlyand, Jane [2 ]
Koeppen, Hartmut [3 ]
Fuentes, Eloisa [3 ]
Huw, Ling Y. [1 ]
Abbas, Ilma [1 ]
Gower, Arjan [1 ]
Schleifman, Erica B. [1 ]
Desai, Rupal [1 ]
Fu, Ling [1 ]
Sumiyoshi, Teiko [1 ]
O'Shaughnessy, Joyce A. [4 ,5 ,6 ]
Hampton, Garret M. [1 ]
Lackner, Mark R. [1 ]
机构
[1] Genentech Inc, Dept Oncol Biomarker Dev, San Francisco, CA 94080 USA
[2] Genentech Inc, Dept Biostat, San Francisco, CA 94080 USA
[3] Genentech Inc, Dept Pathol Res, San Francisco, CA 94080 USA
[4] US Oncol, Dallas, TX USA
[5] Baylor Sammons Canc Ctr, Dallas, TX USA
[6] Texas Oncol, Dallas, TX USA
关键词
Breast cancer; Receptor concordance; ER; PR; HER2; Random forest; IHC; Biomarkers; qPCR; ESTROGEN-RECEPTOR STATUS; GENE-EXPRESSION; MESSENGER-RNA; PREDICTOR; MODEL; IMMUNOHISTOCHEMISTRY; SURVIVAL; THERAPY;
D O I
10.1007/s10549-014-3163-8
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Breast cancers are categorized into three subtypes based on protein expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2/ERBB2). Patients enroll onto experimental clinical trials based on ER, PR, and HER2 status and, as receptor status is prognostic and defines treatment regimens, central receptor confirmation is critical for interpreting results from these trials. Patients enrolling onto experimental clinical trials in the metastatic setting often have limited available archival tissue that might better be used for comprehensive molecular profiling rather than slide-intensive reconfirmation of receptor status. We developed a Random Forests-based algorithm using a training set of 158 samples with centrally confirmed IHC status, and subsequently validated this algorithm on multiple test sets with known, locally determined IHC status. We observed a strong correlation between target mRNA expression and IHC assays for HER2 and ER, achieving an overall accuracy of 97 and 96 %, respectively. For determining PR status, which had the highest discordance between central and local IHC, incorporation of expression of co-regulated genes in a multivariate approach added predictive value, outperforming the single, target gene approach by a 10 % margin in overall accuracy. Our results suggest that multiplexed qRT-PCR profiling of ESR1, PGR, and ERBB2 mRNA, along with several other subtype associated genes, can effectively confirm breast cancer subtype, thereby conserving tumor sections and enabling additional biomarker data to be obtained from patients enrolled onto experimental clinical trials.
引用
收藏
页码:315 / 325
页数:11
相关论文
共 30 条
[1]   The Management of Early-Stage and Metastatic Triple-Negative Breast Cancer: A Review [J].
Anders, Carey K. ;
Zagar, Timothy M. ;
Carey, Lisa A. .
HEMATOLOGY-ONCOLOGY CLINICS OF NORTH AMERICA, 2013, 27 (04) :737-+
[2]  
[Anonymous], CANC RES S24
[3]   PAM50 Breast Cancer Subtyping by RT-qPCR and Concordance with Standard Clinical Molecular Markers [J].
Bastien, Roy R. L. ;
Rodriguez-Lescure, Alvaro ;
Ebbert, Mark T. W. ;
Prat, Aleix ;
Munarriz, Blanca ;
Rowe, Leslie ;
Miller, Patricia ;
Ruiz-Borrego, Manuel ;
Anderson, Daniel ;
Lyons, Bradley ;
Alvarez, Isabel ;
Dowell, Tracy ;
Wall, David ;
Angel Segui, Miguel ;
Barley, Lee ;
Boucher, Kenneth M. ;
Alba, Emilio ;
Pappas, Lisa ;
Davis, Carole A. ;
Aranda, Ignacio ;
Fauron, Christiane ;
Stijleman, Inge J. ;
Palacios, Jose ;
Anton, Antonio ;
Carrasco, Eva ;
Caballero, Rosalia ;
Ellis, Matthew J. ;
Nielsen, Torsten O. ;
Perou, Charles M. ;
Astill, Mark ;
Bernard, Philip S. ;
Martin, Miguel .
BMC MEDICAL GENOMICS, 2012, 5
[4]   Gene expression profiles of poor-prognosis primary breast cancer correlate with survival [J].
Bertucci, F ;
Nasser, V ;
Granjeaud, S ;
Eisinger, F ;
Adelaïde, J ;
Tagett, R ;
Loriod, A ;
Giaconia, A ;
Benziane, A ;
Devilard, E ;
Jacquemier, J ;
Viens, P ;
Nguyen, C ;
Birnbaum, D ;
Houlgatte, R .
HUMAN MOLECULAR GENETICS, 2002, 11 (08) :863-872
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]  
Carlson Robert W, 2006, J Natl Compr Canc Netw, V4 Suppl 1, pS1
[7]   The detection of ESR1/PGR/ERBB2 mRNA levels by RT-QPCR: a better approach for subtyping breast cancer and predicting prognosis [J].
Du, Xin ;
Li, Xiao-Qing ;
Li, Lin ;
Xu, Yuan-Yuan ;
Feng, Yu-Mei .
BREAST CANCER RESEARCH AND TREATMENT, 2013, 138 (01) :59-67
[8]   Systematic Bias in Genomic Classification Due to Contaminating Non-neoplastic Tissue in Breast Tumor Samples [J].
Elloumi, Fathi ;
Hu, Zhiyuan ;
Li, Yan ;
Parker, Joel S. ;
Gulley, Margaret L. ;
Amos, Keith D. ;
Troester, Melissa A. .
BMC MEDICAL GENOMICS, 2011, 4
[9]   Treatment of HER2-positive breast cancer [J].
Figueroa-Magalhaes, Maria Cristina ;
Jelovac, Danijela ;
Connolly, Roisin M. ;
Wolff, Antonio C. .
BREAST, 2014, 23 (02) :128-136
[10]   Model-based clustering, discriminant analysis, and density estimation [J].
Fraley, C ;
Raftery, AE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (458) :611-631