Definable sets in algebraically closed valued fields: elimination of imaginaries

被引:48
作者
Haskell, Deirdre [1 ]
Hrushovski, Ehud
Macpherson, Dugald
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[2] Hebrew Univ Jerusalem, Dept Math, IL-91904 Jerusalem, Israel
[3] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2006年 / 597卷
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
D O I
10.1515/CRELLE.2006.066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that if K is an algebraically closed valued field with valuation ring R, then Th(K) has elimination of imaginaries if sorts are added whose elements are certain cosets in K-n of certain definable R-submodules of K-n (for all n >= 1). The proof involves the development of a theory of independence for unary types, which play the role of 1-types, followed by an analysis of germs of definable functions from unary sets to the sorts.
引用
收藏
页码:175 / 236
页数:62
相关论文
共 16 条
[1]  
[Anonymous], 1942, Duke Math. J., V9, P303, DOI DOI 10.1215/S0012-7094-42-00922-0
[2]  
[Anonymous], 1993, ENCY MATH APPL, DOI DOI 10.1017/CBO9780511551574
[3]   Model theory of difference fields [J].
Chatzidakis, Z ;
Hrushovski, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (08) :2997-3071
[4]   CELL DECOMPOSITIONS OF C-MINIMAL STRUCTURES [J].
HASKELL, D ;
MACPHERSON, D .
ANNALS OF PURE AND APPLIED LOGIC, 1994, 66 (02) :113-162
[5]  
HASKELL D, STABLE DOMINATION IN
[6]   Prototypes for definable subsets of algebraically closed valued fields [J].
Holly, JE .
JOURNAL OF SYMBOLIC LOGIC, 1997, 62 (04) :1093-1141
[8]   Strongly determined types [J].
Ivanov, AA ;
Macpherson, D .
ANNALS OF PURE AND APPLIED LOGIC, 1999, 99 (1-3) :197-230
[9]  
Lang Serge, 1984, Algebra
[10]  
Lascar D., 1987, STABILITY MODEL THEO