Poly(ethylene oxide)-Li10SnP2S12 Composite Polymer Electrolyte Enables High-Performance All-Solid-State Lithium Sulfur Battery

被引:124
作者
Li, Xue [1 ]
Wang, Donghao [1 ]
Wang, Hongchun [1 ]
Yan, Hefeng [1 ]
Gong, Zhengliang [1 ]
Yang, Yong [1 ,2 ]
机构
[1] Xiamen Univ, Coll Energy, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, State Key Lab Phys Chem Solid Surface, Xiamen 361005, Fujian, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Li-S batteries; solid polymer electrolyte; polyethylene oxide; sulfide lithium ionic conductor; interfacial stability; ION-CONDUCTING MEMBRANE; CATHODE MATERIAL; METAL; ANODE; INTERFACE;
D O I
10.1021/acsami.9b05212
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Composite polymer electrolyte membranes are fabricated by the incorporation of Li10SnP2S12 into the poly(ethylene oxide) (PEO) matrix using a solution-casting method. The incorporation of Li10SnP2S12 plays a positive role on Li-ionic conductivity, mechanical property, and interfacial stability of the composite electrolyte and thus significantly enhances the electrochemical performance of the solid-state Li-S battery. The optimal PEO-1%Li10SnP2S12 electrolyte presents a maximum ionic conductivity of 1.69 x 10(-4) S cm(-1) at 50 degrees C and the highest mechanical strength. The possible mechanism for the enhanced electrochemical performance and mechanical property is analyzed. The uniform distribution of Li10SnP2S12 in the PEO matrix inhibits crystallization and weakens the interactions among the PEO chains. The PEO-1%Li10SnP2S12 electrolyte exhibits lower interfacial resistance and higher interfacial stability with the lithium anode than the pure PEO/LiTFSI electrolyte. The Li-S cell comprising the PEO-1%Li10SnP2S12 electrolyte exhibits outstanding electrochemical performance with a high discharge capacity (ca. 1000 mA h g(-1)), high Coulombic efficiency, and good cycling stability at 60 degrees C. Most importantly, the PEO-1%Li10SnP2S12-based cell possesses attractive performance with a high specific capacity (ca. 800 mA h g(-1)) and good cycling stability even at 50 degrees C, whereas the PEO/LiTFSI-based cell cannot be successfully discharged because of the low ionic conductivity and high interfacial resistance of the PEO/LiTFSI electrolyte.
引用
收藏
页码:22745 / 22753
页数:9
相关论文
共 62 条
  • [41] Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion
    Wang, Chaohai
    Kaneti, Yusuf Valentino
    Bando, Yoshio
    Lin, Jianjian
    Liu, Chao
    Li, Jiansheng
    Yamauchi, Yusuke
    [J]. MATERIALS HORIZONS, 2018, 5 (03) : 394 - 407
  • [42] Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries
    Wang, Chunhua
    Yang, Yifu
    Liu, Xingjiang
    Zhong, Hai
    Xu, Han
    Xu, Zhibin
    Shao, Huixia
    Ding, Fei
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (15) : 13694 - 13702
  • [43] High-Performance All-Solid-State Polymer Electrolyte with Controllable Conductivity Pathway Formed by Self-Assembly of Reactive Discogen and Immobilized via a Facile Photopolymerization for a Lithium-Ion Battery
    Wang, Shi
    Liu, Xu
    Wang, Ailian
    Wang, Zhinan
    Chen, Jie
    Zeng, Qinghui
    Jiang, Xiaorui
    Zhou, Henghui
    Zhang, Liaoyun
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (30) : 25273 - 25284
  • [44] ESTIMATION OF LI+ TRANSPORT NUMBER IN POLYMER ELECTROLYTES BY THE COMBINATION OF COMPLEX IMPEDANCE AND POTENTIOSTATIC POLARIZATION MEASUREMENTS
    WATANABE, M
    NAGANO, S
    SANUI, K
    OGATA, N
    [J]. SOLID STATE IONICS, 1988, 28 : 911 - 917
  • [45] Solid-Liquid Electrolyte as a Nanoion Modulator for Dendrite-Free Lithium Anodes
    Wen, Kaihua
    Wang, Yanlei
    Chen, Shimou
    Wang, Xi
    Zhang, Suojiang
    Archer, Lynden A.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (24) : 20412 - 20421
  • [46] An Effective Approach To Protect Lithium Anode and Improve Cycle Performance for Li-S Batteries
    Wu, Feng
    Qian, Ji
    Chen, Renjie
    Lu, Jun
    Li, Li
    Wu, Huiming
    Chen, Junzheng
    Zhao, Teng
    Ye, Yusheng
    Amine, Khalil
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (17) : 15542 - 15549
  • [47] Free-standing anion-exchange PEO-SiO2 hybrid membranes
    Wu, Yonghui
    Wu, Cuiming
    Yu, Fei
    Xu, Tongwen
    Fu, Yanxun
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2008, 307 (01) : 28 - 36
  • [48] Updated Metal Compounds (MOFs, -S, -OH, -N, -C) Used as Cathode Materials for Lithium-Sulfur Batteries
    Xu, Jing
    Lawson, Tom
    Fan, Hongbo
    Su, Dawei
    Wang, Guoxiu
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (10)
  • [49] Li7P3S11/poly(ethylene oxide) hybrid solid electrolytes with excellent interfacial compatibility for all-solid-state batteries
    Xu, Xiaoyan
    Hou, Guangmei
    Nie, Xiangkun
    Ai, Qing
    Liu, Yang
    Feng, Jinkui
    Zhang, Lin
    Si, Pengchao
    Guo, Shirui
    Ci, Lijie
    [J]. JOURNAL OF POWER SOURCES, 2018, 400 : 212 - 217
  • [50] Insight into the Effect of Boron Doping on Sulfur/Carbon Cathode in Lithium-Sulfur Batteries
    Yang, Chun-Peng
    Yin, Ya-Xia
    Ye, Huan
    Jiang, Ke-Cheng
    Zhang, Juan
    Guo, Yu-Guo
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (11) : 8789 - 8795