Poly(ethylene oxide)-Li10SnP2S12 Composite Polymer Electrolyte Enables High-Performance All-Solid-State Lithium Sulfur Battery

被引:124
作者
Li, Xue [1 ]
Wang, Donghao [1 ]
Wang, Hongchun [1 ]
Yan, Hefeng [1 ]
Gong, Zhengliang [1 ]
Yang, Yong [1 ,2 ]
机构
[1] Xiamen Univ, Coll Energy, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, State Key Lab Phys Chem Solid Surface, Xiamen 361005, Fujian, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Li-S batteries; solid polymer electrolyte; polyethylene oxide; sulfide lithium ionic conductor; interfacial stability; ION-CONDUCTING MEMBRANE; CATHODE MATERIAL; METAL; ANODE; INTERFACE;
D O I
10.1021/acsami.9b05212
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Composite polymer electrolyte membranes are fabricated by the incorporation of Li10SnP2S12 into the poly(ethylene oxide) (PEO) matrix using a solution-casting method. The incorporation of Li10SnP2S12 plays a positive role on Li-ionic conductivity, mechanical property, and interfacial stability of the composite electrolyte and thus significantly enhances the electrochemical performance of the solid-state Li-S battery. The optimal PEO-1%Li10SnP2S12 electrolyte presents a maximum ionic conductivity of 1.69 x 10(-4) S cm(-1) at 50 degrees C and the highest mechanical strength. The possible mechanism for the enhanced electrochemical performance and mechanical property is analyzed. The uniform distribution of Li10SnP2S12 in the PEO matrix inhibits crystallization and weakens the interactions among the PEO chains. The PEO-1%Li10SnP2S12 electrolyte exhibits lower interfacial resistance and higher interfacial stability with the lithium anode than the pure PEO/LiTFSI electrolyte. The Li-S cell comprising the PEO-1%Li10SnP2S12 electrolyte exhibits outstanding electrochemical performance with a high discharge capacity (ca. 1000 mA h g(-1)), high Coulombic efficiency, and good cycling stability at 60 degrees C. Most importantly, the PEO-1%Li10SnP2S12-based cell possesses attractive performance with a high specific capacity (ca. 800 mA h g(-1)) and good cycling stability even at 50 degrees C, whereas the PEO/LiTFSI-based cell cannot be successfully discharged because of the low ionic conductivity and high interfacial resistance of the PEO/LiTFSI electrolyte.
引用
收藏
页码:22745 / 22753
页数:9
相关论文
共 62 条
  • [1] Highly conductive PEO-like polymer electrolytes
    Abraham, KM
    Jiang, Z
    Carroll, B
    [J]. CHEMISTRY OF MATERIALS, 1997, 9 (09) : 1978 - 1988
  • [2] Clusters of circulating tumor cells traverse capillary-sized vessels
    Au, Sam H.
    Storey, Brian D.
    Moore, John C.
    Tang, Qin
    Chen, Yeng-Long
    Javaid, Sarah
    Sarioglu, A. Fatih
    Sullivan, Ryan
    Madden, Marissa W.
    O'Keefe, Ryan
    Haber, Daniel A.
    Maheswaran, Shyamala
    Langenau, David M.
    Stott, Shannon L.
    Toner, Mehmet
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (18) : 4947 - 4952
  • [3] Lithium-sulfur batteries-the solution is in the electrolyte, but is the electrolyte a solution?
    Barghamadi, Marzieh
    Best, Adam S.
    Bhatt, Anand I.
    Hollenkamp, Anthony F.
    Musameh, Mustafa
    Rees, Robert J.
    Ruether, Thomas
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (12) : 3902 - 3920
  • [4] The search for a solid electrolyte, as a polysulfide barrier, for lithium/sulfur batteries
    Blanga, R.
    Goor, M.
    Burstein, L.
    Rosenberg, Yu.
    Gladkich, A.
    Logvinuk, D.
    Shechtman, I.
    Golodnitsky, D.
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (12) : 3393 - 3404
  • [5] Promise and reality of post-lithium-ion batteries with high energy densities
    Choi, Jang Wook
    Aurbach, Doron
    [J]. NATURE REVIEWS MATERIALS, 2016, 1 (04):
  • [6] Nanocomposite polymer electrolytes for lithium batteries
    Croce, F
    Appetecchi, GB
    Persi, L
    Scrosati, B
    [J]. NATURE, 1998, 394 (6692) : 456 - 458
  • [7] ELECTROCHEMICAL MEASUREMENT OF TRANSFERENCE NUMBERS IN POLYMER ELECTROLYTES
    EVANS, J
    VINCENT, CA
    BRUCE, PG
    [J]. POLYMER, 1987, 28 (13) : 2324 - 2328
  • [8] More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects
    Fang, Ruopian
    Zhao, Shiyong
    Sun, Zhenhua
    Wang, Wei
    Cheng, Hui-Ming
    Li, Feng
    [J]. ADVANCED MATERIALS, 2017, 29 (48)
  • [9] Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries
    Fu, Kun
    Gong, Yunhui
    Dai, Jiaqi
    Gong, Amy
    Han, Xiaogang
    Yao, Yonggang
    Wang, Chengwei
    Wang, Yibo
    Chen, Yanan
    Yan, Chaoyi
    Li, Yiju
    Wachsman, Eric D.
    Hu, Liangbing
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (26) : 7094 - 7099
  • [10] Toward a remarkable Li-S battery via 3D printing
    Gao, Xuejie
    Sun, Qian
    Yang, Xiaofei
    Liang, Jianneng
    Koo, Alicia
    Li, Weihan
    Liang, Jianwen
    Wang, Jiwei
    Li, Ruying
    Holness, Frederick Benjamin
    Price, Aaron David
    Yang, Songlin
    Sham, Tsun-Kong
    Sun, Xueliang
    [J]. NANO ENERGY, 2019, 56 : 595 - 603