A complete bipartite graph without properly colored cycles of length four

被引:6
作者
Cada, Roman [1 ,2 ]
Ozeki, Kenta [3 ]
Yoshimoto, Kiyoshi [4 ]
机构
[1] Univ West Bohemia, NTIS, Dept Math, Plzen, Czech Republic
[2] Univ West Bohemia, CE ITI European Ctr Excellence, Plzen, Czech Republic
[3] Yokohama Natl Univ, Fac Environm & Informat Sci, Yokohama, Kanagawa, Japan
[4] Nihon Univ, Coll Sci & Technol, Dept Math, Tokyo, Japan
关键词
complete bipartite graph; minimum color degree; properly colored cycle; ANTI-RAMSEY NUMBERS;
D O I
10.1002/jgt.22480
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgraph of an edge-colored graph is said to be properly colored, or shortly PC, if any two adjacent edges have different colors. Fujita, Li, and Zhang gave a decomposition theorem for edge-colorings of complete bipartite graphs without PC C4. However, their decomposition just focuses on a local structure. In this paper, we give a new and global decomposition theorem for edge-colorings of complete bipartite graphs without PC C4. Our decomposition gives a corollary on the existence of a monochromatic star with almost sharp bound.
引用
收藏
页码:168 / 180
页数:13
相关论文
共 16 条
[1]   Cycles and Paths in Edge-Colored Graphs with Given Degrees [J].
Abouelaoualim, A. ;
Das, Kinkar Ch. ;
de la Vega, W. Fernandez ;
Karpinski, M. ;
Manoussakis, Y. ;
Martinhon, C. A. ;
Saad, R. .
JOURNAL OF GRAPH THEORY, 2010, 64 (01) :63-86
[3]   Bipartite anti-Ramsey numbers of cycles [J].
Axenovich, M ;
Jiang, T ;
Kündgen, A .
JOURNAL OF GRAPH THEORY, 2004, 47 (01) :9-28
[4]   Local anti-Ramsey numbers of graphs [J].
Axenovich, M ;
Jiang, T ;
Tuza, Z .
COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (5-6) :495-511
[5]   GRAPHS WITH HAMILTONIAN CYCLES HAVING ADJACENT LINES DIFFERENT COLORS [J].
CHEN, CC ;
DAYKIN, DE .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1976, 21 (02) :135-139
[6]  
Erdo P., 1993, QUO VADIS GRAPH THEO, V55, P81
[7]  
Erdos Paul, 1975, C MATH SOC J BOLYAI, V10
[8]  
Fujita S., THEORY APPL GRAPHS, DOI [10.20429/tag2014.000101, DOI 10.20429/TAG2014.000101]
[9]   Color degree and monochromatic degree conditions for short properly colored cycles in edge-colored graphs [J].
Fujita, Shinya ;
Li, Ruonan ;
Zhang, Shenggui .
JOURNAL OF GRAPH THEORY, 2018, 87 (03) :362-373
[10]   Rainbow Generalizations of Ramsey Theory: A Survey [J].
Fujita, Shinya ;
Magnant, Colton ;
Ozeki, Kenta .
GRAPHS AND COMBINATORICS, 2010, 26 (01) :1-30