MULTIPLICITY AND CONCENTRATION BEHAVIOUR OF POSITIVE SOLUTIONS FOR SCHRODINGER-KIRCHHOFF TYPE EQUATIONS INVOLVING THE p-LAPLACIAN IN RN

被引:12
|
作者
Jia, Huifang
Li, Gongbao [1 ]
机构
[1] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China
关键词
Schrodinger-Kirchhoff type equation; variational methods; multiple positive solutions; concentrating solution; penalization method; BOUND-STATES; EXISTENCE;
D O I
10.1016/S0252-9602(18)30756-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the multiplicity and concentration behavior of positive solutions for the p-Laplacian equation of Schrodinger-Kirchhoff type -epsilon M-p(epsilon(p-N)integral(RN)vertical bar del u vertical bar(p))Delta(p)u + V(x)vertical bar u vertical bar(p-2)u = f(u) in R-N, where Delta(p) is the p-Laplacian operator, 1 < p < N, M : R+ -> R+ and V : R-N -> R+ are continuous functions, epsilon is a positive parameter, and f is a continuous function with subcritical growth. We assume that. V satisfies the local condition introduced by M. del Pino and P. Felmer. By the variational methods, penalization techniques, and LyusternikSchnirelrnann theory, we prove the existence, multiplicity-, arid concentration of solutions for the above equation.
引用
收藏
页码:391 / 418
页数:28
相关论文
共 50 条