Electrochemical performance of carbon nanotube and graphite composite materials

被引:0
作者
Zhou, DF
Zhao, YL
Ma, Y
Hao, J
Xie, HM
Wang, RS [1 ]
机构
[1] NE Normal Univ, Fac Chem, Inst Funct Mat Chem, Changchun 130024, Peoples R China
[2] Changchun Univ Technol, Sch Biol Engn, Changchun 130012, Peoples R China
来源
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE | 2004年 / 25卷 / 06期
关键词
lithium ion battery; nano-material; graphite; composite material;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
When natural graphite (NG) is doped with different ratios of carbon nanotube(CNT), a composite material formed by nano-C and graphite-C was obtained. The measurements show that the complex with 10% CNT(in mass fraction) possesses the best electrochemical performance. Undergoing charge/discharge cycles for 20 times, the charge capacity of this material is obviously improved, 15.9% more than that of pure graphite without CNT. Due to the mid-hollow structure and anti-collapse property for CNT, this composite material would increase charge/discharge capacity and stable cycle property.
引用
收藏
页码:1120 / 1123
页数:4
相关论文
共 12 条
[1]   Reduction of the irreversible capacity in hard-carbon anode materials prepared from sucrose for Li-ion batteries [J].
Buiel, E ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (06) :1977-1981
[2]   Metal-nanocluster-filled carbon nanotubes: Catalytic properties and possible applications in electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Martin, CR ;
Fisher, ER .
LANGMUIR, 1999, 15 (03) :750-758
[3]   Carbon nanotubule membranes for electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Fisher, ER ;
Martin, CR .
NATURE, 1998, 393 (6683) :346-349
[4]   Poly (acrylonitrile) encapsulated graphite as anode materials for lithium ion batteries [J].
Guo, KK ;
Pan, QM ;
Fang, SB .
JOURNAL OF POWER SOURCES, 2002, 111 (02) :350-356
[5]   Electrochemical characteristics and structures of surface-fluorinated graphites with different particle sizes for lithium ion secondary batteries [J].
Gupta, V ;
Nakajima, T ;
Ohzawa, Y ;
Iwata, H .
JOURNAL OF FLUORINE CHEMISTRY, 2001, 112 (02) :233-240
[6]   Lithium interaction with carbon nanotubes [J].
Nalimova, VA ;
Sklovsky, DE ;
Bondarenko, GN ;
AlvergnatGaucher, H ;
Bonnamy, S ;
Beguin, F .
SYNTHETIC METALS, 1997, 88 (02) :89-93
[7]   FORMATION OF LITHIUM-GRAPHITE INTERCALATION COMPOUNDS IN NONAQUEOUS ELECTROLYTES AND THEIR APPLICATION AS A NEGATIVE ELECTRODE FOR A LITHIUM ION (SHUTTLECOCK) CELL [J].
OHZUKU, T ;
IWAKOSHI, Y ;
SAWAI, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (09) :2490-2498
[8]   Surface modification of natural graphite particles for lithium ion batteries [J].
Tsumura, T ;
Katanosaka, A ;
Souma, I ;
Ono, T ;
Aihara, Y ;
Kuratomi, J ;
Inagaki, M .
SOLID STATE IONICS, 2000, 135 (1-4) :209-212
[9]   LITHIUM INSERTION IN CARBONS CONTAINING NANODISPERSED SILICON [J].
WILSON, AM ;
DAHN, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (02) :326-332
[10]   Carbon anode materials for lithium ion batteries [J].
Wu, YP ;
Rahm, E ;
Holze, R .
JOURNAL OF POWER SOURCES, 2003, 114 (02) :228-236