Universality at the edge of the spectrum in Wigner random matrices

被引:237
作者
Soshnikov, A [1 ]
机构
[1] CALTECH, Dept Math, Pasadena, CA 91125 USA
关键词
D O I
10.1007/s002200050743
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove universality at the edge for rescaled correlation functions of Wigner random matrices in the limit n --> +infinity. As a corollary, we show that, after proper rescaling, the 1(th), 2(nd), 3(rd), etc. eigenvalues of Wigner random hermitian (resp. real symmetric) matrix weakly converge to the distributions established by Tracy and Widom in G.U.E. (G.O.E.) cases.
引用
收藏
页码:697 / 733
页数:37
相关论文
共 54 条
[1]   WIGNERS SEMICIRCLE LAW FOR EIGENVALUES OF RANDOM MATRICES [J].
ARNOLD, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 19 (03) :191-&
[3]   NECESSARY AND SUFFICIENT CONDITIONS FOR ALMOST SURE CONVERGENCE OF THE LARGEST EIGENVALUE OF A WIGNER MATRIX [J].
BAI, ZD ;
YIN, YQ .
ANNALS OF PROBABILITY, 1988, 16 (04) :1729-1741
[5]  
BAIK J, IN PRESS J AM MATH S
[6]   Finite-N fluctuation formulas for random matrices [J].
Baker, TH ;
Forrester, PJ .
JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (5-6) :1371-1386
[7]  
BASOR E, 1998, DETERMINANTS AIRY OP
[8]  
BenArous G, 1997, PROBAB THEORY REL, V108, P517
[9]  
BEREZIN FA, 1973, TEOR MAT FIZ, V17, P305
[10]  
BLEHER P, 1996, SEMICLASSICAL ASYMPT