Microfluidic Devices for Drug Delivery Systems and Drug Screening

被引:264
作者
Damiati, Samar [1 ]
Kompella, Uday B. [2 ]
Damiati, Safa A. [3 ]
Kodzius, Rimantas [4 ,5 ,6 ,7 ]
机构
[1] KAU, Dept Biochem, Fac Sci, Jeddah 21589, Saudi Arabia
[2] Univ Colorado, Dept Pharmaceut Sci Ophthalmol & Bioengn, Anschutz Med Campus, Aurora, CO 80045 USA
[3] KAU, Dept Pharmaceut, Fac Pharm, Jeddah 21589, Saudi Arabia
[4] Amer Univ Iraq, Math & Nat Sci Dept, Sulaimani 46001, Sulaymaniyah, Iraq
[5] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
[6] Ludwig Maximilian Univ Munich LMU, Fac Med, D-80539 Munich, Germany
[7] TUM, Fac Med, D-81675 Munich, Germany
关键词
drug and gene delivery systems; in vitro drug screening; cell-on-a-chip; organ-on-a-chip; human-on-a-chip; FREE PROTEIN-SYNTHESIS; DROPLET-BASED MICROFLUIDICS; 3-DIMENSIONAL CELL-CULTURE; ORGANS-ON-CHIPS; POINT-OF-CARE; POLYMERIC NANOPARTICLES; HIGH-THROUGHPUT; GENE DELIVERY; IN-VIVO; MEMBRANE-PROTEINS;
D O I
10.3390/genes9020103
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Microfluidic devices present unique advantages for the development of efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Compared to bulk methods, by efficiently controlling the geometries of the fabricated chip and the flow rates of multiphase fluids, microfluidic technology enables the generation of highly stable, uniform, monodispersed particles with higher encapsulation efficiency. Since the existing preclinical models are inefficient drug screens for predicting clinical outcomes, microfluidic platforms might offer a more rapid and cost-effective alternative. Compared to 2D cell culture systems and in vivo animal models, microfluidic 3D platforms mimic the in vivo cell systems in a simple, inexpensive manner, which allows high throughput and multiplexed drug screening at the cell, organ, and whole-body levels. In this review, the generation of appropriate drug or gene carriers including different particle types using different configurations of microfluidic devices is highlighted. Additionally, this paper discusses the emergence of fabricated microfluidic cell-free protein synthesis systems for potential use at point of care as well as cell-, organ-, and human-on-a-chip models as smart, sensitive, and reproducible platforms, allowing the investigation of the effects of drugs under conditions imitating the biological system.
引用
收藏
页数:24
相关论文
共 184 条
[1]   Microfluidic Preparation of Liposomes to Determine Particle Size Influence on Cellular Uptake Mechanisms [J].
Andar, Abhay U. ;
Hood, Renee R. ;
Vreeland, Wyatt N. ;
DeVoe, Don L. ;
Swaan, Peter W. .
PHARMACEUTICAL RESEARCH, 2014, 31 (02) :401-413
[2]   Formation of dispersions using "flow focusing" in microchannels [J].
Anna, SL ;
Bontoux, N ;
Stone, HA .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :364-366
[3]   25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine [J].
Annabi, Nasim ;
Tamayol, Ali ;
Uquillas, Jorge Alfredo ;
Akbari, Mohsen ;
Bertassoni, Luiz E. ;
Cha, Chaenyung ;
Camci-Unal, Gulden ;
Dokmeci, Mehmet R. ;
Peppas, Nicholas A. ;
Khademhosseini, Ali .
ADVANCED MATERIALS, 2014, 26 (01) :85-124
[4]  
[Anonymous], 2005, ANGEW CHEM, DOI DOI 10.1002/ANGE.200462226
[5]   Cisplatin nephrotoxicity [J].
Arany, I ;
Safirstein, RL .
SEMINARS IN NEPHROLOGY, 2003, 23 (05) :460-464
[6]   Performance of a rotating membrane emulsifier for production of coarse droplets [J].
Aryanti, Nita ;
Hou, Ruozhou ;
Williams, Richard A. .
JOURNAL OF MEMBRANE SCIENCE, 2009, 326 (01) :9-18
[7]  
Aziz Aziz Ur Rehman, 2017, Bioengineering-Basel, V4, DOI 10.3390/bioengineering4020039
[8]   Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications [J].
Balbino, Tiago A. ;
Aoki, Nayla T. ;
Gasperini, Antonio A. M. ;
Oliveira, Cristiano L. P. ;
Azzoni, Adriano R. ;
Cavalcanti, Leide P. ;
de la Torre, Lucimara G. .
CHEMICAL ENGINEERING JOURNAL, 2013, 226 :423-433
[9]   Droplet microfluidics in (bio)chemical analysis [J].
Basova, Evgenia Yu ;
Foret, Frantisek .
ANALYST, 2015, 140 (01) :22-38
[10]   Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA [J].
Belliveau, Nathan M. ;
Huft, Jens ;
Lin, Paulo J. C. ;
Chen, Sam ;
Leung, Alex K. K. ;
Leaver, Timothy J. ;
Wild, Andre W. ;
Lee, Justin B. ;
Taylor, Robert J. ;
Tam, Ying K. ;
Hansen, Carl L. ;
Cullis, Pieter R. .
MOLECULAR THERAPY-NUCLEIC ACIDS, 2012, 1 :e37