Sensitivity of the macroscopic elasticity tensor to topological microstructural changes

被引:30
作者
Giusti, S. M. [1 ]
Novotny, A. A. [1 ]
de Souza Neto, E. A. [2 ]
Feijoo, R. A. [1 ]
机构
[1] LNCC MCT, BR-25651075 Petropolis, RJ, Brazil
[2] Swansea Univ, Civil & Computat Engn Ctr, Sch Engn, Swansea SA2 8PP, W Glam, Wales
基金
英国工程与自然科学研究理事会;
关键词
Homogenized; Elasticity tensor; Topological derivative; Sensitivity analysis; Multi-scale modelling; Synthesis of microstructures; ASYMPTOTIC-EXPANSION; INVERSE SCATTERING; SHAPE; OPTIMIZATION; GRADIENT; DESIGN;
D O I
10.1016/j.jmps.2008.11.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A remarkably simple analytical expression for the sensitivity of the two-dimensional macroscopic elasticity tensor to topological microstructural changes of the underlying material is proposed. The derivation of the proposed formula relies on the concept of topological derivative, applied within a variational multi-scale constitutive framework where the macroscopic strain and stress at each point of the macroscopic continuum are volume averages of their microscopic counterparts over a representative volume element (RVE) of material associated with that point. The derived sensitivity-a symmetric fourth order tensor field over the RVE domain-measures how the estimated two-dimensional macroscopic elasticity tensor changes when a small circular hole is introduced at the microscale level. This information has potential use in the design and optimisation of microstructures. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:555 / 570
页数:16
相关论文
共 51 条
[1]  
ALMGREN RF, 1985, J ELASTICITY, V15, P427, DOI 10.1007/BF00042531
[2]  
Ammari H., 2007, Applied Mathematical Sciences
[3]  
Amstutz S, 2005, CONTROL CYBERN, V34, P81
[5]  
Amstutz S, 2006, ASYMPTOTIC ANAL, V49, P87
[6]   A new algorithm for topology optimization using a level-set method [J].
Amstutz, Samuel ;
Andrae, Heiko .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 216 (02) :573-588
[7]  
[Anonymous], 1981, MATH SCI ENG
[8]  
[Anonymous], 1971, CISM LECT NOTES
[9]  
Auroux D., 2007, VARIATIONAL FORMULAT
[10]   Application of the topological gradient to image restoration and edge detection [J].
Belaid, L. Jaafar ;
Jaoua, M. ;
Masmoudi, M. ;
Siala, L. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2008, 32 (11) :891-899