Fabrication of graphene oxide enwrapped Z-scheme Ag2SO3/AgBr nanoparticles with enhanced visible-light photocatalysis

被引:35
作者
Wan, Yujuan [1 ]
Liang, Chunyan [1 ]
Xia, Yue [1 ]
Huang, Wei [1 ]
Li, Zelin [1 ]
机构
[1] Hunan Normal Univ, Coll Chem & Chem Engn, Key Lab Chem Biol & Tradit Chinese Med Res, Minist Educ China,Key Lab Assembly & Applicat Org, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene oxide; Ag2SO3; Z-scheme; Visible light photocatalysis; HIGHLY EFFICIENT; AG3PO4; COMPOSITES; RECENT PROGRESS; RATE CONSTANTS; METHYL-ORANGE; RHODAMINE-B; STABILITY; DEGRADATION; NANOCOMPOSITES; SEMICONDUCTOR;
D O I
10.1016/j.apsusc.2016.10.189
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel graphene oxide (GO) enwrapped Ag2SO3/AgBr (GO/Ag2SO3/AgBr) composite was fabricated through a facile solution approach via electrostatic interaction and precipitation transformation reaction for the first time. The results of XRD, Raman, SEM, TEM and XPS confirmed the structure, morphology and composition of the GO/Ag2SO3/AgBr composite very well. The Ag2SO3/AgBr nanoparticles were found to be encapsulated by GO sheets. The photocatalytic activity of the composite was investigated by the degradation of methyl orange (MO), rhodamine B (RhB) and methylene blue (MB) in water under visible light. The incorporation of GO sheets not only significantly enhanced the photocatalytic activity but also improved the reusability of Ag2SO3/AgBr nanoparticles. The photocatalytic ability of GO/Ag2SO3/AgBr can be maintained at a high level for 4 times cycle experiments. The trapping experiments confirmed that holes and superoxide ion radicals were the main active species responsible for the degradation reaction. A plasmonic Z-scheme photocatalytic mechanism was proposed to illustrate the possible transferred and separated behavior of electron-hole pairs among Ag, Ag2SO3, AgBr and GO quaternary system under visible light irradiation. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 57
页数:10
相关论文
共 62 条
[1]  
Al-Quadawi S, 2002, J PHOTOCH PHOTOBIO A, V148, P161
[2]   Plasmonic silver incorporated silver halides for efficient photocatalysis [J].
An, Changhua ;
Wang, Shutao ;
Sun, Yugang ;
Zhang, Qinhui ;
Zhang, Jun ;
Wang, Chenyu ;
Fang, Jiye .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (12) :4336-4352
[3]   Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV-VIS diode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry [J].
Baiocchi, C ;
Brussino, MC ;
Pramauro, E ;
Prevot, AB ;
Palmisano, L ;
Marcì, G .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2002, 214 (02) :247-256
[4]  
Barka N, 2008, PHYS CHEM NEWS, V41, P85
[5]   Factors influencing the photocatalytic degradation of Rhodamine B by TiO2-coated non-woven paper [J].
Barka, Noureddine ;
Qourzal, Samir ;
Assabbane, Ali ;
Nounah, Abederrahman ;
Ait-Ichou, Yhya .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2008, 195 (2-3) :346-351
[6]   Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities [J].
Bi, Yingpu ;
Ouyang, Shuxin ;
Cao, Junyu ;
Ye, Jinhua .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (21) :10071-10075
[7]   PHOTOELECTROLYSIS AND PHYSICAL-PROPERTIES OF SEMICONDUCTING ELECTRODE WO3 [J].
BUTLER, MA .
JOURNAL OF APPLIED PHYSICS, 1977, 48 (05) :1914-1920
[8]   PREDICTION OF FLATBAND POTENTIALS AT SEMICONDUCTOR-ELECTROLYTE INTERFACES FROM ATOMIC ELECTRONEGATIVITIES [J].
BUTLER, MA ;
GINLEY, DS .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1978, 125 (02) :228-232
[9]   CRITICAL-REVIEW OF RATE CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS, HYDROGEN-ATOMS AND HYDROXYL RADICALS (.OH/.O-) IN AQUEOUS-SOLUTION [J].
BUXTON, GV ;
GREENSTOCK, CL ;
HELMAN, WP ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1988, 17 (02) :513-886
[10]   Reduced Graphene Oxide Grafted Ag3PO4 Composites with Efficient Photocatalytic Activity under Visible-Light Irradiation [J].
Chai, Bo ;
Li, Jing ;
Xu, Qian .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (21) :8744-8752