Porous carbon nanosheets with precisely tunable thickness and selective CO2 adsorption properties

被引:161
作者
Hao, Guang-Ping [1 ]
Jin, Zhen-Yu [1 ]
Sun, Qiang [1 ]
Zhang, Xiang-Qian [1 ]
Zhang, Jin-Tao [1 ]
Lu, An-Hui [1 ]
机构
[1] Dalian Univ Technol, State Key Lab Fine Chem, Sch Chem Engn, Dalian 116024, Peoples R China
基金
国家杰出青年科学基金;
关键词
METAL-ORGANIC FRAMEWORKS; ZEOLITIC IMIDAZOLATE FRAMEWORKS; DEEP-EUTECTIC SOLVENTS; DOPED ACTIVATED CARBON; DIOXIDE CAPTURE; GRAPHENE OXIDE; MESOPOROUS CARBON; HIGHLY EFFICIENT; RAPID SYNTHESIS; ENERGY-STORAGE;
D O I
10.1039/c3ee41906a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the wet-chemistry synthesis of a new type of porous carbon nanosheet whose thickness can be precisely controlled over the nanometer length scale. This feature is distinct from conventional porous carbons that are composed of micron-sized or larger skeletons, and whose structure is less controlled. The synthesis uses graphene oxide (GO) as the shape-directing agent and asparagine as the bridging molecule that connects the GO and in situ grown polymers by electrostatic interaction between the molecules. The assembly of the nanosheets can produce macroscopic structures, i.e., hierarchically porous carbon monoliths which have a mechanical strength of up to 28.9 MPa, the highest reported for the analogues. The synthesis provides precise control of porous carbons over both microscopic and macroscopic structures at the same time. In all syntheses the graphene content used was in the range 0.5-2.6 wt%, which is significantly lower than that of common surfactants used in the synthesis of porous materials. This indicates the strong shape-directing function of GO. In addition, the overall thickness of the nanosheets can be tuned from 20 to 200 nm according to a fitted linear correlation between the carbon precursor/GO mass ratio and the coating thickness. The porous carbon nanosheets show impressive CO2 adsorption capacity under equilibrium, good separation ability of CO2 from N-2 under dynamic conditions, and easy regeneration. The highest CO2 adsorption capacities can reach 5.67 and 3.54 CO2 molecules per nm(3) pore volume and per nm(2) surface area at 25 degrees C and similar to 1 bar.
引用
收藏
页码:3740 / 3747
页数:8
相关论文
共 85 条
[1]   Strong and binder free structured zeolite sorbents with very high CO2-over-N2 selectivities and high capacities to adsorb CO2 rapidly [J].
Akhtar, Farid ;
Liu, Qingling ;
Hedin, Niklas ;
Bergstrom, Lennart .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (06) :7664-7673
[2]   High and Selective CO2 Uptake in a Cobalt Adeninate Metal-Organic Framework Exhibiting Pyrimidine- and Amino-Decorated Pores [J].
An, Jihyun ;
Geib, Steven J. ;
Rosi, Nathaniel L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (01) :38-+
[3]   On the Gelation of Graphene Oxide [J].
Bai, Hua ;
Li, Chun ;
Wang, Xiaolin ;
Shi, Gaoquan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (13) :5545-5551
[4]   Functional Composite Materials Based on Chemically Converted Graphene [J].
Bai, Hua ;
Li, Chun ;
Shi, Gaoquan .
ADVANCED MATERIALS, 2011, 23 (09) :1089-1115
[5]   Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties [J].
Banerjee, Rahul ;
Furukawa, Hiroyasu ;
Britt, David ;
Knobler, Carolyn ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (11) :3875-+
[6]   Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area [J].
Ben, Teng ;
Ren, Hao ;
Ma, Shengqian ;
Cao, Dapeng ;
Lan, Jianhui ;
Jing, Xiaofei ;
Wang, Wenchuan ;
Xu, Jun ;
Deng, Feng ;
Simmons, Jason M. ;
Qiu, Shilun ;
Zhu, Guangshan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (50) :9457-9460
[7]  
Borrnert F., 2011, ADV MATER, V23, P4471
[8]   The effect of water on the adsorption of CO2 and C3H8 on type X zeolites [J].
Brandani, F ;
Ruthven, DM .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (26) :8339-8344
[9]   Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites [J].
Britt, David ;
Furukawa, Hiroyasu ;
Wang, Bo ;
Glover, T. Grant ;
Yaghi, Omar M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (49) :20637-20640
[10]   Nanoscale metal-organic materials [J].
Carne, Arnau ;
Carbonell, Carlos ;
Imaz, Inhar ;
Maspoch, Daniel .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (01) :291-305