On the Scattering of Electromagnetic Waves by Cylindrical Bodies with Non-Coordinate Boundaries

被引:1
作者
Pleshchinskaya, I. E. [1 ]
Pleshchinskii, N. B. [2 ]
机构
[1] Kazan Natl Res Technol Univ, Dept Informat & Appl Math, Kazan 420015, Tatarstan, Russia
[2] Kazan Volga Reg Fed Univ, Inst Computat Math & Informat Technol, Kazan 420008, Tatarstan, Russia
关键词
electromagnetic wave; scattering; cylindrical body; non-coordinate boundary; DIFFRACTION;
D O I
10.1134/S1995080220070367
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Different variants of the problem of diffraction of plane electromagnetic wave by the cylindrical body are constructed and researched in the work. These problems are reduced to infinite sets of linear algebraic equations. The conductive bodies and dielectric bodies with thin conductive bands on the non-coordinate boundary are considered. The results of the computational experiment are presented.
引用
收藏
页码:1385 / 1395
页数:11
相关论文
共 16 条
[1]  
Bakhvalov N.S., 1987, NUMERICAL METHODS, P600
[2]   Hypersingular Integral Equations in Computational Electrodynamics [J].
A. G. Davydov ;
E. V. Zakharov ;
Yu. V. Pimenov .
Computational Mathematics and Modeling, 2003, 14 (1) :1-15
[3]  
Dmitriev V. I., 1965, VYCHISL METODY PROGR, V3, P307
[4]  
Galishnikova T. N., 2013, INTEGRAL EQUATION ME
[5]  
King R.W. P., 1959, SCATTERING DIFFRACTI
[6]   Infinite Sets of Linear Algebraic Equations in the Problems of Diffraction of Electromagnetic Waves by the Non-Coordinate Periodic Media Interfaces [J].
Pleshchinskaya, I. E. ;
Pleshchinskii, N. B. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2019, 40 (10) :1685-1694
[7]  
PLESHCHINSKII I, 2018, J ADV RES DYNAM CONT, V10, P1741
[8]   On Generalized Solutions of Problems of Electromagnetic Wave Diffraction by Screens in the Closed Cylindrical Waveguides [J].
Pleshchinskii, N. B. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2019, 40 (02) :201-209
[9]  
Pleshchinskii N. B., 2008, Models and Methods of Waveguided Electrodynamics
[10]  
Potekhin A. I., 1948, CERTAIN PROBLEMS DIF