Evaluating suitable semiconducting materials for cryogenic power electronics

被引:2
作者
Bradley, Luke [1 ]
Donaghy-Spargo, Christopher [2 ]
Atkinson, Glynn [1 ]
Horsfall, Alton [1 ]
机构
[1] Newcastle Univ, Sch Engn, Dept Emerging Technol & Mat, Newcastle NE1 7RU, England
[2] Univ Durham, Sch Engn, Dept Engn, Durham DH1 3LE, England
来源
JOURNAL OF ENGINEERING-JOE | 2019年 / 17期
基金
英国工程与自然科学研究理事会;
关键词
superconducting machines; III-V semiconductors; power semiconductor devices; silicon; carrier mobility; silicon compounds; thermal conductivity; gallium arsenide; elemental semiconductors; electric machines; cryogenic electronics; power electronics; wide band gap semiconductors; electric current control; germanium; bulk resistivity model; technologically relevant semiconductors; power electronic devices; cryogenic power electronics; hybrid electric aircraft; power networks; superconducting electrical machines; cryogenic temperatures; high-performance cryogenic power devices; semiconducting materials; superconducting power networks; electrical current flow control; dopant ionisation energy; temperature; 20; 0; K; Ge; GaAs; Si; SiC; HIGH-TEMPERATURE PERFORMANCE; ELECTRICAL ACTIVATION; IMPURITY SCATTERING; HALL-COEFFICIENT; MOBILITY; RECOMBINATION; RESISTIVITY; DEPENDENCE; CONDUCTION; GERMANIUM;
D O I
10.1049/joe.2018.8099
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The interest in hybrid electric aircraft has invigorated research into superconducting power networks and superconducting electrical machines. Underpinning this is the ability to control the flow of electrical current at cryogenic temperatures, using power electronic devices. The authors have, for the first time, directly compared the performance of technologically relevant semiconductor materials for the realisation of high-performance cryogenic power devices using a bulk resistivity model. By validating the model using both computational and experimental results, the performance of technologically relevant semiconductors has been calculated down to a temperature of 20K where the freeze out of dopants is shown to be the major limiting factor in determining the performance of power electronic devices. Both Ge and GaAs are predicted to have a superior conductivity in comparison to the industrial standards Si and 4H-SiC due to greater carrier mobilities and lower dopant ionisation energies.
引用
收藏
页码:4475 / 4479
页数:5
相关论文
共 50 条
  • [31] Deterioration Evaluation of Irradiated Insulation Materials used for Power Electronics
    Miyaji, Yoshitaka
    Ishikawa, Hirotaku
    Tajiri, Kunihiko
    Shiota, Hiroki
    Enoki, Kaisei
    Endo, Kazuki
    Miyake, Hiroaki
    Tanaka, Yasuhiro
    2022 9TH INTERNATIONAL CONFERENCE ON CONDITION MONITORING AND DIAGNOSIS (CMD), 2022, : 467 - 470
  • [32] ENERGY PULSE MODIFICATION OF ELECTRONIC MATERIALS: FROM ELECTRONICS VIA PHOTONICS TO OTHER ADVANCED MATERIALS
    Skorupa, Wolfgang
    Anwand, Wolfgang
    Gebel, Thoralf
    PROCEEDINGS OF THE ASME INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, VOL 2, 2009, : 685 - 692
  • [33] Design and Operation of a Cost-Effective Cooling Chamber for Testing Power Electronics at Cryogenic Temperatures
    Buettner, Stefanie
    Windisch, Julian
    Maerz, Martin
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2023, 26 (03) : 46 - 51
  • [34] Ultimate nano-electronics: New materials and device concepts for scaling nano-electronics beyond the Si roadmap
    Collaert, N.
    Alian, A.
    Arimura, H.
    Boccardi, G.
    Eneman, G.
    Franco, J.
    Ivanov, Ts.
    Lin, D.
    Loo, R.
    Merckling, C.
    Mitard, J.
    Pourghaderi, M. A.
    Rooyackers, R.
    Sioncke, S.
    Sun, J. W.
    Vandooren, A.
    Veloso, A.
    Verhulst, A.
    Waldron, N.
    Witters, L.
    Zhou, D.
    Barla, K.
    Thean, A. V. -Y.
    MICROELECTRONIC ENGINEERING, 2015, 132 : 218 - 225
  • [35] Build to Win: Power Electronics
    Leeb, Steven B.
    Alvira, Mariano
    Cox, Robert W.
    Cooley, John J.
    Kirtley, James L., Jr.
    Shaw, Steven R.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (04) : 1936 - 1943
  • [36] Role of Wide Bandgap Materials in Power Electronics for Smart Grids Applications
    Ballestin-Fuertes, Javier
    Munoz-Cruzado-Alba, Jesus
    Sanz-Osorio, Jose F.
    Laporta-Puyal, Erika
    ELECTRONICS, 2021, 10 (06) : 1 - 26
  • [37] Noncured Graphene Thermal Interface Materials for High-Power Electronics: Minimizing the Thermal Contact Resistance
    Sudhindra, Sriharsha
    Kargar, Fariborz
    Balandin, Alexander A.
    NANOMATERIALS, 2021, 11 (07)
  • [38] SiC Power Module Packaging Using Printed Electronics Materials and Processes
    Al-Haidari, Riadh
    Richmond, Dylan
    Obeidat, Abdullah
    Alhendi, Mohammed
    Abbara, El Mehdi
    Somarathna, Udara S.
    Poliks, Mark
    Gowda, Arun V.
    Erlbaum, Jeff
    Xiong, Han
    Hitchcock, Collin
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2024, 14 (12): : 2196 - 2210
  • [39] Cryogenic GaAs laser power converters
    Kim, Bora
    Kim, Mijung
    Li, Brian D.
    Hool, Ryan D.
    Lee, Minjoo Larry
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2025, 281
  • [40] Revealing the ductile-to-brittle transition mechanism in polycrystalline body-centered tetragonal tin (Sn) for cryogenic electronics
    Ji, Xiaoliang
    An, Rong
    Zhou, Wei
    Zhong, Ying
    Guo, Fu
    Wang, Chunqing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 903