PT-symmetric square well and the associated SUSY hierarchies

被引:48
作者
Bagchi, B
Mallik, S
Quesne, C
机构
[1] Univ Calcutta, Dept Math Appl, Kolkata 700009, W Bengal, India
[2] Univ Libre Brussels, B-1050 Brussels, Belgium
关键词
supersymmetric quantum mechanics; PT symmetry; square well;
D O I
10.1142/S0217732302008009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The PT-symmetric square well problem is considered in a SUSY framework. When the coupling strength Z lies below the critical value Z(O)((C)) where PT symmetry becomes spontaneously broken, we find a hierarchy of SUSY partner potentials, depicting an unbroken SUSY situation and reducing to the family of sect-like potentials in the Z --> O limit. For Z above Z(O)((c)), there is a rich diversity of SUSY hierarchies, including some with PT-symmetry breaking and some with partial PT-symmetry restoration.
引用
收藏
页码:1651 / 1664
页数:14
相关论文
共 21 条
[1]   Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 282 (06) :343-348
[2]   SUSY quantum mechanics with complex superpotentials and real energy spectra [J].
Andrianov, AA ;
Ioffe, MV ;
Cannata, F ;
Dedonder, JP .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (17) :2675-2688
[3]   sl(2, C) as a complex Lie algebra and the associated non-Hermitian Hamiltonians with real eigenvalues [J].
Bagchi, B ;
Quesne, C .
PHYSICS LETTERS A, 2000, 273 (5-6) :285-292
[4]   PT-symmetric sextic potentials [J].
Bagchi, B ;
Cannata, F ;
Quesne, C .
PHYSICS LETTERS A, 2000, 269 (2-3) :79-82
[5]   A new PT-symmetric complex Hamiltonian with a real spectrum [J].
Bagchi, B ;
Roychoudhury, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (01) :L1-L3
[6]   Generating complex potentials with real eigenvalues in supersymmetric quantum mechanics [J].
Bagchi, B ;
Mallik, S ;
Quesne, C .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (16) :2859-2872
[7]   Generalized continuity equation and modified normalization in PT-symmetric quantum mechanics [J].
Bagchi, B ;
Quesne, C ;
Znojil, M .
MODERN PHYSICS LETTERS A, 2001, 16 (31) :2047-2057
[8]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[9]  
Bessis D ., 1992, UNPUB
[10]   Schrodinger operators with complex potential but real spectrum [J].
Cannata, F ;
Junker, G ;
Trost, J .
PHYSICS LETTERS A, 1998, 246 (3-4) :219-226