Novel multirate control strategy for piezoelectric actuators

被引:5
作者
Zareinejad, M. [1 ]
Rezaei, S. M. [1 ,2 ]
Najafabadi, H. H. [1 ,2 ]
Ghidary, S. S. [3 ]
Abdullah, A. [1 ,2 ]
Saadat, M. [4 ]
机构
[1] Amirkabir Univ Technol, Dept Mech Engn, Tehran, Iran
[2] Amirkabir Univ Technol, New Technol Res Ctr, Tehran, Iran
[3] Amirkabir Univ Technol, Dept Comp Engn, Tehran, Iran
[4] Univ Birmingham, Dept Mech & Mfg Engn, Birmingham, W Midlands, England
关键词
piezoelectric actuators; hysteresis; Prandtl-Ishlinskii; multirate control; HIGH-GAIN OBSERVERS; PIEZOCERAMIC ACTUATORS; HYSTERESIS; SYSTEMS;
D O I
10.1243/09596518JSCE695
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, a novel control method is proposed for feedforward compensation of hysteresis non-linearity in various frequency ranges. By integrating a multirate hysteresis compensator controller with PID feedback control, a combined controller is developed and experimentally validated for a piezoelectric micro-positioning system. Piezoelectric materials show non-linear hysteresis behaviour when they experience an electrical field. A fundamental study of a piezoelectric actuator (PEA) shows that the hysteresis effect deteriorates the tracking performance of the PEA. This paper presents a non-linear model which quantifies the hysteresis non-linearity generated in PEAs in response to the applied driving voltages. The tracking control method is based on multirate feedforward control. The proposed multirate control method uses an inverse modified Prandtl-Ishlinskii operator to cancel out hysteresis non-linearity. The controller structure has a simple design and can be quickly identified. The control system is capable of achieving suitable tracking control and it is convenient to use and can be quickly applied to practical PEA applications. Experimental results are provided to verify the efficiency of the proposed method.
引用
收藏
页码:673 / 682
页数:10
相关论文
共 27 条
[1]  
ADRIAENS A, 2000, IEEE-ASME T MECH, V5, P478
[2]   Multirate sampled-data output feedback using high-gain observers [J].
Ahrens, Jeffrey H. ;
Khalil, Hassan K. .
PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, :4885-4890
[3]  
BASHASH S, P ASME INT MECH ENG, P2626
[4]   Robust multiple frequency trajectory tracking control of piezoelectrically driven micro/nanopositioning systems [J].
Bashash, Saeid ;
Jalili, Nader .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2007, 15 (05) :867-878
[5]   Active vibration control of an elastic plate using multiple piezoelectric sensors and actuators [J].
Caruso, G ;
Galeani, S ;
Menini, L .
SIMULATION MODELLING PRACTICE AND THEORY, 2003, 11 (5-6) :403-419
[6]   Creep, hysteresis, and vibration compensation for piezoactuators: Atomic force microscopy application [J].
Croft, D ;
Shed, G ;
Devasia, S .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2001, 123 (01) :35-43
[7]   Performance optimization of a fast tool servo for single-point diamond turning machines [J].
Cuttino, JF ;
Miller, AC ;
Schinstock, DE .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 1999, 4 (02) :169-179
[8]   Output feedback sampled-data control of nonlinear systems using high-gain observers [J].
Dabroom, AM ;
Khalil, HK .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (11) :1712-1725
[9]   MODELING HYSTERESIS IN PIEZOCERAMIC ACTUATORS [J].
GE, P ;
JOUANEH, M .
PRECISION ENGINEERING-JOURNAL OF THE AMERICAN SOCIETY FOR PRECISION ENGINEERING, 1995, 17 (03) :211-221
[10]   Modeling piezoelectric stack actuators for control of micromanipulation [J].
Goldfarb, M ;
Celanovic, N .
IEEE CONTROL SYSTEMS MAGAZINE, 1997, 17 (03) :69-79