Spectral-Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques

被引:564
作者
Tarabalka, Yuliya [1 ,2 ]
Benediktsson, Jon Atli [1 ]
Chanussot, Jocelyn [2 ]
机构
[1] Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland
[2] GIPSA Lab Grenoble Inst Technol, F-38402 St Martin Dheres, France
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2009年 / 47卷 / 08期
关键词
Clustering; hyperspectral images; majority vote; segmentation; spectral-spatial classification; SEGMENTATION; ALGORITHM; FRAMEWORK; AREAS;
D O I
10.1109/TGRS.2009.2016214
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A new spectral-spatial classification scheme for hyperspectral images is proposed. The method combines the results of a pixel wise support vector machine classification and the segmentation map obtained by partitional clustering using majority voting. The ISODATA algorithm and Gaussian mixture resolving techniques are used for image clustering. Experimental results are presented for two hyperspectral airborne images. The developed classification scheme improves the classification accuracies and provides classification maps with more homogeneous regions, when compared to pixel wise classification. The proposed method performs particularly well for classification of images with large spatial structures and when different classes have dissimilar spectral responses and a comparable number of pixels.
引用
收藏
页码:2973 / 2987
页数:15
相关论文
共 71 条
[1]  
Acito N, 2003, INT GEOSCI REMOTE SE, P3745
[2]  
Aksoy S., 2006, Signal and Image Processing for Remote Sensing, chapter Spatial techniques for image classification, P491
[3]  
[Anonymous], AVIRIS NW Indiana's Indian Pines 1992 Data Set
[4]  
[Anonymous], P SPIE, DOI DOI 10.1117/12.339824
[5]  
[Anonymous], 2006, P 2006 IEEE INT C AC
[6]  
[Anonymous], 2003, WILEY HOBOKEN
[7]  
[Anonymous], 2002, COMPUTER VISION
[8]  
Ball G., 1965, AD699616 STANF U
[9]  
Beaven SG, 2000, INT GEOSCI REMOTE SE, P1597, DOI 10.1109/IGARSS.2000.857283
[10]   Classification of hyperspectral data from urban areas based on extended morphological profiles [J].
Benediktsson, JA ;
Palmason, JA ;
Sveinsson, JR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :480-491