The origin of stress reduction by low-temperature AlN interlayers

被引:115
作者
Bläsing, J [1 ]
Reiher, A [1 ]
Dadgar, A [1 ]
Diez, A [1 ]
Krost, A [1 ]
机构
[1] Univ Magdeburg, Inst Expt Phys, Fak Nat Wissensch, D-39106 Magdeburg, Germany
关键词
D O I
10.1063/1.1512331
中图分类号
O59 [应用物理学];
学科分类号
摘要
Thin low-temperature AlN interlayers can be applied to reduce stress to grow thick crack-free AlGaN layers on GaN buffer layers on sapphire and thick crack-free GaN layers on Si. The mechanism leading to stress reduction is investigated by high resolution x-ray diffractometry measurements on metalorganic chemical vapor phase epitaxy grown samples on Si(111) with different interlayer deposition temperatures. A decrease of tensile stress with decreasing interlayer growth temperature is observed. From reciprocal space maps we conclude that interlayers grown at high temperatures are pseudomorphic, while grown at lower temperatures they are relaxed. Therefore, AlGaN or GaN layers grown on a low temperature AlN interlayer grow under compressive interlayer-induced strain. The stress in the GaN layer depends on the growth temperature that likely controls the amount of AlN interlayer relaxation. (C) 2002 American Institute of Physics.
引用
收藏
页码:2722 / 2724
页数:3
相关论文
共 10 条
[1]   Stress and defect control in GaN using low temperature interlayers [J].
Amano, H ;
Iwaya, M ;
Kashima, T ;
Katsuragawa, M ;
Akasaki, I ;
Han, J ;
Hearne, S ;
Floro, JA ;
Chason, E ;
Figiel, J .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1998, 37 (12B) :L1540-L1542
[2]  
Amano H, 1999, PHYS STATUS SOLIDI B, V216, P683, DOI 10.1002/(SICI)1521-3951(199911)216:1<683::AID-PSSB683>3.0.CO
[3]  
2-4
[4]   Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 μm in thickness [J].
Dadgar, A ;
Bläsing, J ;
Diez, A ;
Alam, A ;
Heuken, M ;
Krost, A .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2000, 39 (11B) :L1183-L1185
[5]   Thick, crack-free blue light-emitting diodes on Si(111) using low-temperature AlN interlayers and in situ SixNy masking [J].
Dadgar, A ;
Poschenrieder, M ;
Bläsing, J ;
Fehse, K ;
Diez, A ;
Krost, A .
APPLIED PHYSICS LETTERS, 2002, 80 (20) :3670-3672
[6]   LOW-TEMPERATURE METALORGANIC CHEMICAL VAPOR-DEPOSITION OF INP ON SI(001) [J].
GRUNDMANN, M ;
KROST, A ;
BIMBERG, D .
APPLIED PHYSICS LETTERS, 1991, 58 (03) :284-286
[7]   Control and elimination of cracking of AlGaN using low-temperature AlGaN interlayers [J].
Han, J ;
Waldrip, KE ;
Lee, SR ;
Figiel, JJ ;
Hearne, SJ ;
Petersen, GA ;
Myers, SM .
APPLIED PHYSICS LETTERS, 2001, 78 (01) :67-69
[8]   AlGaN GaN heterostructures on insulating AlGaN nucleation layers [J].
Smart, JS ;
Schremer, AT ;
Weimann, NG ;
Ambacher, O ;
Eastman, LF ;
Shealy, JR .
APPLIED PHYSICS LETTERS, 1999, 75 (03) :388-390
[9]   Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors [J].
Waldrip, KE ;
Han, J ;
Figiel, JJ ;
Zhou, H ;
Makarona, E ;
Nurmikko, AV .
APPLIED PHYSICS LETTERS, 2001, 78 (21) :3205-3207
[10]   Metalorganic vapor phase epitaxy growth of crack-free AlN on GaN and its application to high-mobility AlN/GaN superlattices [J].
Yamaguchi, S ;
Kosaki, M ;
Watanabe, Y ;
Yukawa, Y ;
Nitta, S ;
Amano, H ;
Akasaki, I .
APPLIED PHYSICS LETTERS, 2001, 79 (19) :3062-3064