Solution of some conjectures about topological properties of linear cellular automata

被引:36
作者
Cattaneo, G
Dennunzio, A
Margara, L
机构
[1] Univ Milano Bicocca, Dipartimento Informat Sistemist & Comunicaz, I-20126 Milan, Italy
[2] Univ Bologna, Dipartimento Sci Informaz, Bologna, Italy
关键词
cellular automata; discrete time dynamical systems; chaos theory;
D O I
10.1016/j.tcs.2004.06.008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study two dynamical properties of linear D-dimensional cellular automata over Z(m) namely, denseness of periodic points and topological mixing. For what concerns denseness of periodic points, we complete the work initiated in (Theoret. Comput. Sci. 174 (1997) 157, Theoret. Comput. Sci. 233 (1-2) (2000) 147, 14th Annual Symp. on Theoretical Aspects of Computer Science (STACS '97), LNCS n. 1200, Springer, Berlin, 1997, pp. 427-438) by proving that a linear cellular automata has dense periodic points over the entire space of configurations if and only if it is surjective (as conjectured in (Cattanco et al., 2000)). For non-surjective linear CA we give a complete characterization of the subspace where periodic points are dense. For what concerns topological mixing, we prove that this property is equivalent to transitivity and then easily checkable. Finally, we classify linear cellular automata according to the definition of chaos given by Devaney in (An Introduction to Chaotic Dynamical Systems, 2nd ed., Addison-Wesley, Reading, MA, USA, 1989). (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:249 / 271
页数:23
相关论文
共 18 条
[1]   ON DEVANEY DEFINITION OF CHAOS [J].
BANKS, J ;
BROOKS, J ;
CAIRNS, G ;
DAVIS, G ;
STACEY, P .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) :332-334
[2]  
Cattaneo G, 2002, FUND INFORM, V52, P39
[3]  
Cattaneo G, 1997, LECT NOTES COMPUT SC, V1200, P427, DOI 10.1007/BFb0023478
[4]   Ergodicity, transitivity, and regularity for linear cellular automata over Zm [J].
Cattaneo, G ;
Formenti, E ;
Manzini, G ;
Margara, L .
THEORETICAL COMPUTER SCIENCE, 2000, 233 (1-2) :147-164
[5]  
CHAUDHURI PP, 1997, ADDITIVE CELL AUTOMA, V1
[6]   ON THE LIMIT-SETS OF CELLULAR AUTOMATA [J].
CULIK, K ;
PACHL, J ;
YU, S .
SIAM JOURNAL ON COMPUTING, 1989, 18 (04) :831-842
[7]  
Culik Karel., 1988, Complex Systems, V2, P177
[8]  
DAMICO M, 1998, 25 INT C AUT LANG PR
[9]  
Devaney R, 1987, An introduction to chaotic dynamical systems, DOI 10.2307/3619398
[10]   Additive one-dimensional cellular automata are chaotic according to Devaney's definition of chaos [J].
Favati, P ;
Lotti, G ;
Margara, L .
THEORETICAL COMPUTER SCIENCE, 1997, 174 (1-2) :157-170