A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells

被引:83
作者
Ding, Hanping [1 ,3 ]
Tao, Zetian [2 ]
Liu, Shun [1 ]
Zhang, Jiujun [4 ]
机构
[1] Xian Shiyou Univ, Sch Petr Engn, Xian 710065, Peoples R China
[2] Yancheng Inst Coll, Key Lab Adv Technol Environm Protect Jiangsu, Yancheng, Jiangsu, Peoples R China
[3] Colorado Sch Mines, Dept Mech Engn, Colorado Fuel Cell Ctr, Golden, CO 80401 USA
[4] Natl Res Council Canada, Energy Min & Environm, Vancouver, BC V6T 1W5, Canada
基金
中国国家自然科学基金;
关键词
HIGH-TEMPERATURE; COMPOSITE OXIDE; ACTIVE ANODE; CATHODES; SURFACE; SOFC; NI; DIFFUSION; OXIDATION; MEMBRANES;
D O I
10.1038/srep18129
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnO(x)] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)(0.95)(Fe0.9Mo0.1)(2)O5 + delta (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 degrees C, the layered PBFM showed high electrical conductivity of 59.2 S cm(-1) in 5% H-2 and peak power densities of 1.72 and 0.54 W cm(-2) using H-2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm(-2). To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode.
引用
收藏
页数:9
相关论文
共 38 条
[1]   Advanced anodes for high-temperature fuel cells [J].
Atkinson, A ;
Barnett, S ;
Gorte, RJ ;
Irvine, JTS ;
Mcevoy, AJ ;
Mogensen, M ;
Singhal, SC ;
Vohs, J .
NATURE MATERIALS, 2004, 3 (01) :17-27
[2]   Intermediate temperature solid oxide fuel cells [J].
Brett, Daniel J. L. ;
Atkinson, Alan ;
Brandon, Nigel P. ;
Skinner, Stephen J. .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (08) :1568-1578
[3]   Methane Electrochemical Oxidation Pathway over a Ni/YSZ and La0.3Sr0.7TiO3 Bi-Layer SOFC Anode [J].
Buccheri, M. A. ;
Hill, J. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (04) :B361-B367
[4]   High performance protonic ceramic membrane fuel cells (PCMFCs) with Ba0.5Sr0.5Zn0.2Fe0.8O3-δ perovskite cathode [J].
Ding, Hanping ;
Lin, Bin ;
Liu, Xingqin ;
Meng, Guangyao .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (09) :1388-1391
[5]   Alternative anode materials for solid oxide fuel cells [J].
Goodenough, John B. ;
Huang, Yun-Hui .
JOURNAL OF POWER SOURCES, 2007, 173 (01) :1-10
[6]   Conductivity and expansion at high temperature in Sr0.7La0.3TiO3-α prepared under reducing atmosphere [J].
Hashimoto, S ;
Kindermann, L ;
Larsen, PH ;
Poulsen, FW ;
Mogensen, M .
JOURNAL OF ELECTROCERAMICS, 2006, 16 (02) :103-107
[7]   Double perovskites as anode materials for solid-oxide fuel cells [J].
Huang, YH ;
Dass, RI ;
Xing, ZL ;
Goodenough, JB .
SCIENCE, 2006, 312 (5771) :254-257
[8]   Double-Perovskite Anode Materials Sr2MMoO6 (M = Co, Ni) for Solid Oxide Fuel Cells [J].
Huang, Yun-Hui ;
Liang, Gan ;
Croft, Mark ;
Lehtimaki, Matti ;
Karppinen, Maarit ;
Goodenought, John B. .
CHEMISTRY OF MATERIALS, 2009, 21 (11) :2319-2326
[9]   Electrical and structural properties of Nb-doped SrTiO3 ceramics [J].
Karczewski, J. ;
Riegel, B. ;
Gazda, M. ;
Jasinski, P. ;
Kusz, B. .
JOURNAL OF ELECTROCERAMICS, 2010, 24 (04) :326-330
[10]   Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations [J].
Kim, G. ;
Wang, S. ;
Jacobson, A. J. ;
Reimus, L. ;
Brodersen, P. ;
Mims, C. A. .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (24) :2500-2505