TWO GENERALIZATIONS OF CHEEGER-GROMOLL SPLITTING THEOREM VIA BAKRY-EMERY RICCI CURVATURE

被引:74
作者
Fang, Fuquan [1 ]
Li, Xiang-Dong [2 ,3 ]
Zhang, Zhenlei [1 ]
机构
[1] Capital Normal Univ, Dept Math, Beijing, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Univ Toulouse 3, Inst Math, F-31062 Toulouse 9, France
关键词
Busemann function; splitting theorem; Bakry-Emery Ricci curvature; SOLITONS;
D O I
10.5802/aif.2440
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove two generalized versions of the Cheeger-Gromoll splitting theorem via the non-negativity of the Bakry-Emery Ricci curvature on complete Riemannian manifolds.
引用
收藏
页码:563 / 573
页数:11
相关论文
共 21 条
[1]  
[Anonymous], 1999, Metric structures for Riemannian and nonRiemannian spaces
[2]  
Bakry D., 1985, Lecture Notes in Math., VXIX, P177, DOI 10.1007/BFb0075847
[3]  
Bakry D., 1994, LECT NOTES MATH, V1581, P1, DOI 10.1007/BFb0073872
[4]  
Bakry Dominique, 2005, Theta Ser. Adv. Math., V4, P115
[5]  
Besse A. L., 1987, ERGEBNISSE MATH IHRE, DOI [10.1007/978-3-540-74311-8, DOI 10.1007/978-3-540-74311-8]
[7]  
Cheeger Jeff., 1971, J. Differential Geometry, V6, P119, DOI 10.4310/jdg/1214430220
[8]  
ESCHENBURG JH, 1984, ANN GLOB ANAL GEOM, V2, P141
[9]   A remark on compact Ricci solitons [J].
Fernandez-Lopez, M. ;
Garcia-Rio, E. .
MATHEMATISCHE ANNALEN, 2008, 340 (04) :893-896
[10]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF, V2nd