Medical Image Classification with Hand-Designed or Machine-Designed Texture Descriptors: A Performance Evaluation

被引:13
作者
Badejo, Joke A. [1 ]
Adetiba, Emmanuel [1 ,2 ,3 ]
Akinrinmade, Adekunle [1 ]
Akanle, Matthew B. [1 ,2 ]
机构
[1] Covenant Univ, Dept Elect & Informat Engn, Canaanland, Ota, Nigeria
[2] Covenant Univ, Ctr Syst & Informat Serv CSIS, Canaanland, Ota, Nigeria
[3] Durban Univ Technol, Inst Syst Sci, HRA, POB 1334, Durban, South Africa
来源
BIOINFORMATICS AND BIOMEDICAL ENGINEERING (IWBBIO 2018), PT II | 2019年 / 10814卷
关键词
Medical image classification; Deep learning; Convolution Neural Network; Texture descriptors; CONVOLUTIONAL NEURAL-NETWORKS; DATASET;
D O I
10.1007/978-3-319-78759-6_25
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Accurate diagnosis and early detection of various disease conditions are key to improving living conditions in any community. The existing framework for medical image classification depends largely on advanced digital image processing and machine (deep) learning techniques for significant improvement. In this paper, the performance of traditional hand-designed texture descriptors within the image-based learning paradigm is evaluated in comparison with machine-designed descriptors (extracted from pre-trained Convolution Neural Networks). Performance is evaluated, with respect to speed, accuracy and storage requirements, based on four popular medical image datasets. The experiments reveal an increased accuracy with machine-designed descriptors in most cases, though at a higher computational cost. It is therefore necessary to consider other parameters for tradeoff depending on the application being considered.
引用
收藏
页码:266 / 275
页数:10
相关论文
共 30 条
[1]   Improved Classification of Lung Cancer Using Radial Basis Function Neural Network with Affine Transforms of Voss Representation [J].
Adetiba, Emmanuel ;
Olugbara, Oludayo O. .
PLOS ONE, 2015, 10 (12)
[2]  
Adetiba Emmanuel, 2015, ScientificWorldJournal, V2015, P786013, DOI 10.1155/2015/786013
[3]  
[Anonymous], 2018, P 10 KES INT C INT I, DOI [DOI 10.1007/978-3-319-59480-4, DOI 10.1007/978-3-319-59480-4_1]
[4]   A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells [J].
Boland, MV ;
Murphy, RF .
BIOINFORMATICS, 2001, 17 (12) :1213-1223
[5]   A multiresolution approach to automated classification of protein subcellular location images [J].
Chebira, Amina ;
Barbotin, Yann ;
Jackson, Charles ;
Merryman, Thomas ;
Srinivasa, Gowri ;
Murphy, Robert F. ;
Kovacevic, Jelena .
BMC BIOINFORMATICS, 2007, 8 (1)
[6]   Deep Filter Banks for Texture Recognition, Description, and Segmentation [J].
Cimpoi, Mircea ;
Maji, Subhransu ;
Kokkinos, Iasonas ;
Vedaldi, Andrea .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2016, 118 (01) :65-94
[7]   HEp-2 Cell Image Classification With Deep Convolutional Neural Networks [J].
Gao, Zhimin ;
Wang, Lei ;
Zhou, Luping ;
Zhang, Jianjia .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2017, 21 (02) :416-428
[8]   The Chromosome 9p21 CVD- and T2D-Associated Regions in a Norwegian Population (The HUNT2 Survey) [J].
Helgeland, Oyvind ;
Hertel, Jens K. ;
Molven, Anders ;
Reader, Helge ;
Platou, Carl G. P. ;
Midthjell, Kristian ;
Hveem, Kristian ;
Nygard, Ottar ;
Njolstad, Pal R. ;
Johansson, Stefan .
INTERNATIONAL JOURNAL OF ENDOCRINOLOGY, 2015, 2015
[9]   HEp-2 staining pattern recognition at cell and specimen levels: Datasets, algorithms and results [J].
Hobson, Peter ;
Lovell, Brian C. ;
Percannella, Gennaro ;
Saggese, Alessia ;
Vento, Mario ;
Wiliem, Arnold .
PATTERN RECOGNITION LETTERS, 2016, 82 :12-22
[10]  
Jantzen J, 2005, NATURE INSPIRED SMAR