Equation of state and shock compression of warm dense sodium-A first-principles study

被引:34
作者
Zhang, Shuai [1 ,3 ]
Driver, Kevin P. [1 ]
Soubiran, Francois [1 ]
Militzer, Burkhard [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA
[3] Lawrence Livermore Natl Lab, Quantum Simulat Grp, Livermore, CA 94550 USA
基金
美国国家科学基金会;
关键词
HIGH-PRESSURE; ALKALI-METALS; HYDROGEN; HUGONIOT; HOT; IMPLEMENTATION; CONSTITUTION; SIMULATIONS; DYNAMICS; MODEL;
D O I
10.1063/1.4976559
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As one of the simple alkali metals, sodium has been of fundamental interest for shock physics experiments, but knowledge of its equation of state (EOS) in hot, dense regimes is not well known. By combining path integral Monte Carlo (PIMC) results for partially ionized states [B. Militzer and K. P. Driver, Phys. Rev. Lett. 115, 176403 (2015)] at high temperatures and density functional theory molecular dynamics (DFT-MD) results at lower temperatures, we have constructed a coherent equation of state for sodium over a wide density-temperature range of 1.93-11.60 g/cm(3) and 10(3)-1.29 x 10(8) K. We find that a localized, Hartree-Fock nodal structure in PIMC yields pressures and internal energies that are consistent with DFT-MD at intermediate temperatures of 2 x 10(6) K. Since PIMC and DFT-MD provide a first-principles treatment of electron shell and excitation effects, we are able to identify two compression maxima in the shock Hugoniot curve corresponding to K-shell and L-shell ionization. Our Hugoniot curves provide a benchmark for widely used EOS models: SESAME, LEOS, and Purgatorio. Due to the low ambient density, sodium has an unusually high first compression maximum along the shock Hugoniot curve. At beyond 107 K, we show that the radiation effect leads to very high compression along the Hugoniot curve, surpassing relativistic corrections, and observe an increasing deviation of the shock and particle velocities from a linear relation. We also compute the temperature-density dependence of thermal and pressure ionization processes. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 91 条
[1]  
Ahrens T. J., 2003, ENCY GEOMAGNETISM PA, P912
[2]  
Aleksandrov I., 1982, ZHETF PISMA REDAKTSI, V36, P336
[3]   What do we (not) know theoretically about solar neutrino fluxes? [J].
Bahcall, JN ;
Pinsonneault, MH .
PHYSICAL REVIEW LETTERS, 2004, 92 (12) :121301-1
[4]  
BAKANOVA AA, 1965, FIZ TVERD TELA+, V7, P1307
[5]   Computer simulation of liquid metals [J].
Belashchenko, D. K. .
PHYSICS-USPEKHI, 2013, 56 (12) :1176-1216
[6]   Impact compression of alkali metals: Computer-aided simulation [J].
Belashchenko, D. K. .
HIGH TEMPERATURE, 2013, 51 (05) :626-639
[7]   Application of the embedded atom model to liquid metals: Liquid sodium [J].
Belashchenko, D. K. .
HIGH TEMPERATURE, 2009, 47 (04) :494-507
[8]   Multiphase equation of state for carbon addressing high pressures and temperatures [J].
Benedict, Lorin X. ;
Driver, Kevin P. ;
Hamel, Sebastien ;
Militzer, Burkhard ;
Qi, Tingting ;
Correa, Alfredo A. ;
Saul, A. ;
Schwegler, Eric .
PHYSICAL REVIEW B, 2014, 89 (22)
[9]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[10]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569