Productivity potential of an inline deposition system for amorphous and microcrystalline silicon solar cells

被引:18
作者
Strobel, C. [1 ]
Zimmermann, T. [1 ]
Albert, M. [1 ]
Bartha, J. W. [1 ]
Kuske, J. [2 ]
机构
[1] Tech Univ Dresden, Semicond & Microsyst Technol Lab, D-01062 Dresden, Germany
[2] Forsch & Applikat Lab Plasmatech GmbH, D-01217 Dresden, Germany
关键词
Amorphous; Silicon; Microcrystalline; Large area; VHF-PECVD; Solar cells; HIGH-RATE GROWTH; MICROWAVE PLASMA; VHF-GD; EFFICIENCY; MODULES; PERFORMANCE; TECHNOLOGY; FILMS;
D O I
10.1016/j.solmat.2009.04.023
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Amorphous and microcrystalline silicon single layers and p-i-n solar cells were produced dynamically using an inline deposition system called "line source". A highly uniform deposition of thin-film silicon layers with layer-thickness variations of less than +/- 5% was achieved. Amorphous and microcrystalline silicon single junction solar cells were dynamically fabricated with initial efficiencies of 8.3% and 6.3%, respectively. The dynamic deposition rate of these solar cells is 6.75 nm m/min in case of a-Si:H and 3.3 nm m/min for mu c-Si:H. In this work it will be shown that an enhancement of the deposition rate up to 15,6 nm m/min during the i-layer deposition of a-Si:H solar cells has only a weak negative influence on the initial efficiencies of the cells. Further on, the effect of substrate velocity on solar cell characteristics of a-Si: H solar cells is investigated. Finally, a productivity estimation of the line source concept is presented. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1598 / 1607
页数:10
相关论文
共 45 条
[1]  
BRECHTEL H, 2001, VHF HIGH RATE PCVD L
[2]  
CHAE Y, 2007, P 22 EUR PHOT SOL EN, P1807
[3]  
FISCHER D, 2007, Patent No. 11521874
[4]   High rate growth of microcrystalline silicon by VHF-GD at high pressure [J].
Graf, U ;
Meier, J ;
Kroll, U ;
Bailat, J ;
Droz, C ;
Vallat-Sauvain, E ;
Shah, A .
THIN SOLID FILMS, 2003, 427 (1-2) :37-40
[5]   Amorphous silicon alloy photovoltaic technology and applications [J].
Guha, S .
RENEWABLE ENERGY, 1998, 15 (1-4) :189-194
[6]   BAND-GAP PROFILING FOR IMPROVING THE EFFICIENCY OF AMORPHOUS-SILICON ALLOY SOLAR-CELLS [J].
GUHA, S ;
YANG, J ;
PAWLIKIEWICZ, A ;
GLATFELTER, T ;
ROSS, R ;
OVSHINSKY, SR .
APPLIED PHYSICS LETTERS, 1989, 54 (23) :2330-2332
[7]   High rate deposition of microcrystalline silicon using conventional plasma-enhanced chemical vapor deposition [J].
Guo, LH ;
Kondo, M ;
Fukawa, M ;
Saitoh, K ;
Matsuda, A .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1998, 37 (10A) :L1116-L1118
[8]   Production technology for amorphous silicon-based flexible solar cells [J].
Ichikawa, Y ;
Yoshida, T ;
Hama, T ;
Sakai, H ;
Harashima, K .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 66 (1-4) :107-115
[9]  
KADAM A, 2008, 23 EUR PHOT SOL EN C, P2062
[10]   Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells [J].
Kluth, O ;
Rech, B ;
Houben, L ;
Wieder, S ;
Schöpe, G ;
Beneking, C ;
Wagner, H ;
Löffl, A ;
Schock, HW .
THIN SOLID FILMS, 1999, 351 (1-2) :247-253