Geometry of Hasimoto Surfaces in Minkowski 3-Space

被引:43
|
作者
Erdogdu, Melek [1 ]
Ozdemir, Mustafa [2 ]
机构
[1] Necmettin Erbakan Univ, Dept Math & Comp Sci, Konya, Turkey
[2] Akdeniz Univ, Dept Math, TR-07058 Antalya, Turkey
关键词
Hasimoto surface; Smoke ring equation; Binormal motion; BINORMAL MOTION; SOLITON; CURVES;
D O I
10.1007/s11040-014-9148-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the Hasimoto surfaces in Minkowski 3-space. We discussed the geometric properties of Hasimoto surfaces in M-3 for three cases. The Gaussian and mean curvature of Hasimoto surface are found for each case. Then, we give the characterization of parameter curves of Hasimoto surfaces in M-3
引用
收藏
页码:169 / 181
页数:13
相关论文
共 50 条
  • [1] Geometry of Hasimoto Surfaces in Minkowski 3-Space
    Melek Erdoğdu
    Mustafa Özdemir
    Mathematical Physics, Analysis and Geometry, 2014, 17 : 169 - 181
  • [2] Geometry and evolution of Hasimoto surface in Minkowski 3-space
    Abdel-Aziz, H. S.
    Serry, H. M.
    El-Adawy, F. M.
    Saad, M. Khalifa
    PLOS ONE, 2024, 19 (01):
  • [3] Hasimoto surfaces for two classes of curve evolution in Minkowski 3-space
    Gurbuz, Nevin
    Yoon, Dae Won
    DEMONSTRATIO MATHEMATICA, 2020, 53 (01) : 277 - 284
  • [4] Generalized Hasimoto-type surfaces of null growth in Minkowski 3-space
    Qian, Jinhua
    Li, Yawen
    Fu, Xueshan
    MATHEMATISCHE ANNALEN, 2024, 389 (01) : 187 - 208
  • [5] ON THE HASIMOTO SURFACES IN EUCLIDEAN 3-SPACE
    Kaymanli, Gul Ugur
    Ekici, Cumali
    Kocak, Mahmut
    JOURNAL OF SCIENCE AND ARTS, 2022, (04): : 883 - 890
  • [6] Generalized Hasimoto-type surfaces of null growth in Minkowski 3-space
    Jinhua Qian
    Yawen Li
    Xueshan Fu
    Mathematische Annalen, 2024, 389 : 187 - 208
  • [7] Exploring Hasimoto surfaces within equiform geometry in Minkowski space
    Elsharkawy, Ayman
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [8] The Chen type of Hasimoto surfaces in the Euclidean 3-space
    Al-Zoubi, Hassan
    Senoussi, Bendehiba
    Al-Sabbagh, Mutaz
    Ozdemir, Mehmet
    AIMS MATHEMATICS, 2023, 8 (07): : 16062 - 16072
  • [9] Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space
    Yang, Dan
    Fu, Yu
    Li, Lan
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (02) : 459 - 480
  • [10] Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space
    Dan Yang
    Yu Fu
    Lan Li
    Frontiers of Mathematics in China, 2017, 12 : 459 - 480