Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing

被引:123
作者
Frey, Nathan C. [1 ]
Akinwande, Deji [2 ]
Jariwala, Deep [3 ]
Shenoy, Vivek B. [1 ]
机构
[1] Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA
[2] Univ Texas Austin, Dept Elect & Comp Engn, Microelect Res Ctr, Austin, TX 78758 USA
[3] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
machine learning; 2D materials; defects; DFT; quantum emission; resistive switching; neuromorphic computing; TRANSITION; REGRESSION; VAN;
D O I
10.1021/acsnano.0c05267
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Engineered point defects in two-dimensional (2D) materials offer an attractive platform for solid-state devices that exploit tailored optoelectronic, quantum emission, and resistive properties. Naturally occurring defects are also unavoidably important contributors to material properties and performance. The immense variety and complexity of possible defects make it challenging to experimentally control, probe, or understand atomic-scale defect-property relationships. Here, we develop an approach based on deep transfer learning, machine learning, and first-principles calculations to rapidly predict key properties of point defects in 2D materials. We use physics-informed featurization to generate a minimal description of defect structures and present a general picture of defects across materials systems. We identify over one hundred promising, unexplored dopant defect structures in layered metal chalcogenides, hexagonal nitrides, and metal halides. These defects are prime candidates for quantum emission, resistive switching, and neuromorphic computing.
引用
收藏
页码:13406 / 13417
页数:12
相关论文
共 70 条
[11]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[12]   Machine Learning in Nanoscience: Big Data at Small Scales [J].
Brown, Keith A. ;
Brittman, Sarah ;
Maccaferri, Nicolo ;
Jariwala, Deep ;
Ceano, Umberto .
NANO LETTERS, 2020, 20 (01) :2-10
[13]   Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals [J].
Chen, Chi ;
Ye, Weike ;
Zuo, Yunxing ;
Zheng, Chen ;
Ong, Shyue Ping .
CHEMISTRY OF MATERIALS, 2019, 31 (09) :3564-3572
[14]   Revealing the Spectrum of Unknown Layered Materials with Superhuman Predictive Abilities [J].
Cheon, Gowoon ;
Cubuk, Ekin D. ;
Antoniuk, Evan R. ;
Blumberg, Lavi ;
Goldberger, Joshua E. ;
Reed, Evan J. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (24) :6967-6972
[15]  
Das S., 2020, Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures, P445, DOI [10.1016/B978-0-12-818475-2.00019-2, DOI 10.1016/B978-0-12-818475-2.00019-2]
[16]   Quantum sensing [J].
Degen, C. L. ;
Reinhard, F. ;
Cappellaro, P. .
REVIEWS OF MODERN PHYSICS, 2017, 89 (03)
[17]   Conversion of non-van der Waals solids to 2D transition-metal chalcogenides [J].
Du, Zhiguo ;
Yang, Shubin ;
Li, Songmei ;
Lou, Jun ;
Zhang, Shuqing ;
Wang, Shuai ;
Li, Bin ;
Gong, Yongji ;
Song, Li ;
Zou, Xiaolong ;
Ajayan, Pulickel M. .
NATURE, 2020, 577 (7791) :492-+
[18]  
Dunn A, 2020, NPJ COMPUT MATER, V6, DOI 10.1038/s41524-020-00406-3
[19]   Optical Signatures of Quantum Emitters in Suspended Hexagonal Boron Nitride [J].
Exarhos, Annemarie L. ;
Hopper, David A. ;
Grote, Richard R. ;
Alkauskas, Audrius ;
Bassett, Lee C. .
ACS NANO, 2017, 11 (03) :3328-3336
[20]   Identifying candidate hosts for quantum defects via data mining [J].
Ferrenti, Austin M. ;
de Leon, Nathalie P. ;
Thompson, Jeff D. ;
Cava, Robert J. .
NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)