Asymptotic expansion of perturbative Chern-Simons theory via Wiener space

被引:6
作者
Albeverio, Sergio [1 ]
Mitoma, Itaru [2 ]
机构
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[2] Saga Univ, Dept Math, Saga 8408502, Japan
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2009年 / 133卷 / 03期
基金
日本学术振兴会;
关键词
Chern-Simons integral; Asymptotic expansion; Abstract Winer space; Malliavin-Taniguchi formula; Linking number; ONE-LOOP APPROXIMATION; LINK INVARIANTS; PATH-INTEGRALS; GAUGE; CALCULUS; FORMULA;
D O I
10.1016/j.bulsci.2007.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Chern-Simons integral is divided into a sum of finitely many resp. infinitely many contributions. A mathematical meaning is given to the "finite part" and an asymptotic estimate of the other part is given, using the abstract Wiener space setting. The latter takes the form of an asymptotic expansion in powers of a charge, using the infinite-dimensional Malliavin-Taniguchi formula for a change of variables. (C) 2007 Published by Elsevier Masson SAS.
引用
收藏
页码:272 / 314
页数:43
相关论文
共 43 条
[1]   Some new developments in the theory of path integrals, with applications to quantum theory [J].
Albeverio, S ;
Mazzucchi, S .
JOURNAL OF STATISTICAL PHYSICS, 2004, 115 (1-2) :191-215
[2]   A mathematical construction of the non-abelian Chern-Simons functional integral [J].
Albeverio, S ;
Sengupta, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (03) :563-579
[3]   CHERNSIMONS,ABELIAN THEORY AND LINKING NUMBERS VIA OSCILLATORY INTEGRALS [J].
ALBEVERIO, S ;
SCHAFER, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (05) :2157-2169
[4]  
ALBEVERIO S, 2007, MATH THEORY FEYNMAN
[5]  
ALBEVERIO S, 2004, P LISB C
[6]  
ALTSCHULER D, 1997, COMMUN MATH PHYS, V187, P261
[7]  
[Anonymous], 1989, PRINCETON MATH SER
[8]  
[Anonymous], 1982, GRAD TEXTS MATH
[9]   NON-ABELIAN STOKES-FORMULA [J].
AREFEVA, IY .
THEORETICAL AND MATHEMATICAL PHYSICS, 1980, 43 (01) :353-356
[10]  
Atiyah M., 1990, The Geometry and Physics of Knots