REMARKS ON QUADRATIC FIELDS WITH NONCYCLIC IDEAL CLASS GROUPS

被引:0
作者
Kim, Kwang-Seob [1 ]
机构
[1] Korea Inst Adv Study, Sch Math, Seoul 130722, South Korea
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2015年 / 19卷 / 05期
关键词
Ideal class group; Real quadratic fields; CLASS-NUMBERS; DIVISIBILITY;
D O I
10.11650/tjm.19.2015.5081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n be an integer. Then, it is well known that there are infinitely many imaginary quadratic fields with an ideal class group having a subgroup isomorphic to Z/nZ x Z/nZ. Less is known for real quadratic fields, other than the cases that n = 3, 5, or 7, due to Craig [3] and Mestre [4, 5]. In this article, we will prove that there exist infinitely many real quadratic number fields with the ideal class group having a subgroup isomorphic to Z/nZ x Z/nZ In addition, we will prove that there exist infinitely many imaginary quadratic number fields with the ideal class group having a subgroup isomorphic to Z/nZ x Z/nZ x Z/nZ.
引用
收藏
页码:1387 / 1399
页数:13
相关论文
共 12 条
[1]  
Ankeny N., 1955, PAC J MATH, V5, P321, DOI DOI 10.2140/PJM.1955.5.321
[2]   Imaginary quadratic fields with noncyclic ideal class groups [J].
Byeon, Dongho .
RAMANUJAN JOURNAL, 2006, 11 (02) :159-163
[3]  
Craig Maurice., 1977, Osaka Journal of Mathematics, V14, P365
[4]   ON THE DIVISIBILITY OF THE CLASS NUMBER OF IMAGINARY QUADRATIC NUMBER FIELDS [J].
Louboutin, Stephane R. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (12) :4025-4028
[5]  
Mestre J. F., 1979, SEM NUMB THEOR 1979
[6]  
Mestre J. F., 1981, PROGR MATH, V38, P189
[7]  
Murty M.R., 1997, TOPICS NUMBER THEORY, V467, P229
[8]  
Nagel T., 1922, Abh. Math. Sem. Univ. Hamburg, V1, P140, DOI [DOI 10.1007/BF02940586, 10.1007/BF02940586]
[9]   Divisibility of class numbers of imaginary quadratic fields [J].
Soundararajan, K .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 :681-690
[10]  
Weinberger P.J., 1973, J NUMBER THEORY, V5, P237