A fast collocation method for an inverse boundary value problem

被引:40
作者
Fang, WF [1 ]
Lu, MY [1 ]
机构
[1] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
关键词
collocation method; multiscale method; inverse boundary value problem; semiconductor contact resistance;
D O I
10.1002/nme.928
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present an implementation of a fast multiscale collocation method for boundary integral equations of the second kind, and its application to solving an inverse boundary value problem of recovering a coefficient function from a boundary measurement. We illustrate by numerical examples the insensitive nature of the map from the coefficient to measurement, and design and test a Gauss-Newton iteration algorithm for obtaining the best estimate of the unknown coefficient front the given measurement based on a least-squares formulation. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:1563 / 1585
页数:23
相关论文
共 19 条
[1]  
[Anonymous], 1993, Ten Lectures of Wavelets
[2]  
Atkinson KE., 1996, NUMERICAL SOLUTION I
[3]   IDENTIFICATION OF SEMICONDUCTOR CONTACT RESISTIVITY [J].
BUSENBERG, S ;
FANG, WF .
QUARTERLY OF APPLIED MATHEMATICS, 1991, 49 (04) :639-649
[4]   Identification of Robin coefficients by the means of boundary measurements [J].
Chaabane, S ;
Jaoua, M .
INVERSE PROBLEMS, 1999, 15 (06) :1425-1438
[5]  
CHEN Z, 2002, IMPLEMENTATION FAST
[6]   Fast collocation methods for second kind integral equations [J].
Chen, ZY ;
Micchelli, CA ;
Xu, YS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (01) :344-375
[7]   A construction of interpolating wavelets on invariant sets [J].
Chen, ZY ;
Micchelli, CA ;
Xu, YS .
MATHEMATICS OF COMPUTATION, 1999, 68 (228) :1569-1587
[8]  
Fang W., 2002, J INTEGRAL EQUAT, V14, P355, DOI DOI 10.1216/JIEA/1181074928
[9]   An implementation of fast wavelet Galerkin methods for integral equations of the second kind [J].
Fang, WF ;
Wang, Y ;
Xu, YS .
JOURNAL OF SCIENTIFIC COMPUTING, 2004, 20 (02) :277-302
[10]   Identification of contact regions in semiconductor transistors by level-set methods [J].
Fang, WF ;
Ito, K .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 159 (02) :399-410