Statistical analysis for vortex particle swarm optimization

被引:22
作者
Eduardo Espitia, Helbert [1 ]
Ivan Sofrony, Jorge [2 ]
机构
[1] Univ Dist Francisco Jose de Caldas, Bogota, Colombia
[2] Univ Nacl Colombia, Bogota, Colombia
关键词
Bio-inspired optimization; Particle swarm; Statistical analysis; CONVERGENCE;
D O I
10.1016/j.asoc.2018.03.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the statistical analysis of vortex particle swarm optimization (VPSO) which is a boost algorithm based on self-propelled particle swarms. In order to avoid local minima, the optimization algorithm uses two separated behaviors: translational and dispersion. This idea mimics living organism strategies such as foraging and predator avoidance. The dispersion is given by vortex behavior (circular movements) to scape from local minima. Via suitable parameter configuration is possible to switch between translational (convergence) and circular movements (dispersion). Performance of the algorithm is studied via statistical analysis results using well-known test functions. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:370 / 386
页数:17
相关论文
共 61 条
[1]  
Abdel M.H.M., 2008, INT C COMP INT INT S, P24
[2]  
[Anonymous], PARTICLE SWARM OPTIM
[3]  
[Anonymous], ESTADISTICA BASICA C
[4]  
[Anonymous], P 2002 UK WORKSH COM
[5]  
[Anonymous], 1987, Multiple comparison procedures
[6]   NUMERICAL POTENTIAL-FIELD TECHNIQUES FOR ROBOT PATH PLANNING [J].
BARRAQUAND, J ;
LANGLOIS, B ;
LATOMBE, JC .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1992, 22 (02) :224-241
[7]   On the invariance of ant colony optimization [J].
Birattari, Mauro ;
Pellegrini, Paola ;
Dorigo, Marco .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2007, 11 (06) :732-742
[8]   Defining a standard for particle swarm optimization [J].
Bratton, Daniel ;
Kennedy, James .
2007 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2007, :120-+
[9]  
Cagnina L., 2010, THESIS
[10]  
Cervantes A., 2009, THESIS