Jacobian Conjecture via Differential Galois Theory

被引:0
作者
Adamus, Elzbieta [1 ]
Crespo, Teresa [2 ]
Hajto, Zbigniew [3 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[2] Univ Barcelona, Dept Matemat & Informat, Gran Via Corts Catalanes 585, E-08007 Barcelona, Spain
[3] Jagiellonian Univ, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
polynomial automorphisms; Jacobian problem; strongly normal extensions;
D O I
10.3842/SIGMA.2019.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a polynomial map is invertible if and only if some associated differential ring homomorphism is bijective. To this end, we use a theorem of Crespo and Hajto linking the invertibility of polynomial maps with Picard-Vessiot extensions of partial differential fields, the theory of strongly normal extensions as presented by Kovacic and the characterization of Picard-Vessiot extensions in terms of tensor products given by Levelt.
引用
收藏
页数:7
相关论文
共 17 条
[1]  
Adamus E., J ALGEBRA APPL
[2]  
Adamus E., 2017, SCHEDAE INFORM, V26, P49
[3]   An effective study of polynomial maps [J].
Adamus, Elzbieta ;
Bogdan, Pawel ;
Crespo, Teresa ;
Hajto, Zbigniew .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (08)
[4]  
[Anonymous], 2000, Progress in Mathematics
[5]   THE JACOBIAN CONJECTURE - REDUCTION OF DEGREE AND FORMAL EXPANSION OF THE INVERSE [J].
BASS, H ;
CONNELL, EH ;
WRIGHT, D .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (02) :287-330
[6]   CONDITION FOR A POLYNOMIAL MAP TO BE INVERTIBLE [J].
CAMPBELL, LA .
MATHEMATISCHE ANNALEN, 1973, 205 (03) :243-248
[7]   Picard-vessiot theory and the Jacobian problem [J].
Crespo, Teresa ;
Hajto, Zbigniew .
ISRAEL JOURNAL OF MATHEMATICS, 2011, 186 (01) :401-406
[8]   Quasi-translations and counterexamples to the homogeneous dependence problem [J].
De Bondt, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (10) :2849-2856
[9]  
de Bondt M, 2007, THESIS
[10]  
Keller O. H., 1939, Monatsh. Math. Phys., V47, P299, DOI DOI 10.1007/BF01695502(GERMAN