The minimum diameter of orientations of complete multipartite graphs

被引:27
作者
Koh, KM [1 ]
Tan, BP [1 ]
机构
[1] NATL UNIV SINGAPORE,FAC SCI,DEPT MATH,SINGAPORE 119260,SINGAPORE
关键词
D O I
10.1007/BF01858466
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a graph G, let D(G) be the family of strong orientations of G, and define epsilon E(G) = min{diam D\D is an element of D(G)). A pair {p, q} of integers is called a co-pair if 1 less than or equal to p less than or equal to q less than or equal to [(p)([p/2])]. A multiset {p,q,r} of positive integers is called a co-triple if {p,q} and {p,r} are co-pairs. Let K(p(1),p(2),...,p(n)) denote the complete n-partite graph having p(i) vertices in the ith partite set. In this paper, we show that if {p(1),p(2),...,p(n)} can be partitioned into co-pairs when n is even, and into co-pairs and a co-triple when n is odd, then epsilon(K(p(1),p(2),...,p(n))) = 2 provided that (n,p(1),p(2),p(3),p(4)) not equal (4, 1, 1, 1, 1). This substantially extends a result of Gutin [3] and a result of Koh and Tan [4].
引用
收藏
页码:333 / 339
页数:7
相关论文
共 8 条
[1]   ROBBINS THEOREM FOR MIXED MULTIGRAPHS [J].
BOESCH, F ;
TINDELL, R .
AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (09) :716-719
[2]  
CHVATAL V, 1978, J COMB THEORY B, V24, P61, DOI 10.1016/0095-8956(78)90078-3
[3]   MINIMIZING THE MAXIMIZING THE DIAMETER OF ORIENTATIONS OF GRAPHS [J].
GUTIN, G .
GRAPHS AND COMBINATORICS, 1994, 10 (03) :225-230
[4]  
KOH KM, IN PRESS DISCRETE MA
[5]  
Maurer SB, 1980, MATH MAG, V53, P67, DOI [DOI 10.1080/0025570X.1980.11976837, DOI 10.1080/0025570X.1980.11976831]
[6]   EVERY VERTEX A KING [J].
REID, KB .
DISCRETE MATHEMATICS, 1982, 38 (01) :93-98
[7]  
Robbins HE., 1939, AM MATH MONTHLY, V46, P281, DOI [10.2307/2303897, DOI 10.2307/2303897]
[8]  
Soltes L., 1986, Mathematica Slovaca, V36, P289